Corollary 4.6.6.9. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $f_{\pm }: K_{-} \star K_{+} \rightarrow \operatorname{\mathcal{C}}$ be a diagram. Then, for any inclusion of simplicial sets $A \hookrightarrow B$, the diagram of $\infty $-categories
4.59
\begin{equation} \begin{gathered}\label{equation:double-slice-consequence} \xymatrix { \operatorname{Fun}(B, \operatorname{\mathcal{C}}_{ f_{-} / \, / f_{+} }) \ar [r] \ar [d] & \operatorname{Fun}( K_{-} \star B \star K_{+},\operatorname{\mathcal{C}}) \ar [d] \\ \operatorname{Fun}(A, \operatorname{\mathcal{C}}_{ f_{-} / \, / f_{+}} ) \ar [r] & \operatorname{Fun}( K_{-} \star A \star K_{+}, \operatorname{\mathcal{C}}) } \end{gathered} \end{equation}
is a categorical pullback square.