Corollary 11.5.0.13. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. The following conditions are equivalent:
- $(1)$
There exists a partially ordered set $A$ and an equivalence of $\infty $-categories $\operatorname{\mathcal{C}}\rightarrow \operatorname{N}_{\bullet }(A)$.
- $(2)$
For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the morphism space $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ is either empty or contractible.
- $(3)$
Every object of $\operatorname{\mathcal{C}}$ is subterminal.