Remark 1.1.3.3. Let $S$ be the coproduct of a collection of simplicial sets $\{ S(a) \} _{a \in A}$. Then $S$ has dimension $\leq k$ if and only if each $S(a)$ has dimension $\leq k$.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$
Remark 1.1.3.3. Let $S$ be the coproduct of a collection of simplicial sets $\{ S(a) \} _{a \in A}$. Then $S$ has dimension $\leq k$ if and only if each $S(a)$ has dimension $\leq k$.