Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Exercise 3.2.4.8. Let $X$ be a simplicial set. Show that the following conditions are equivalent:

$(1)$

The simplicial set $X$ is contractible: that is, the projection map $X \rightarrow \Delta ^0$ is a homotopy equivalence (Definition 3.2.4.1).

$(2)$

The identity morphism $\operatorname{id}_{X}: X \rightarrow X$ is nullhomotopic.

$(3)$

Every morphism of simplicial sets $f: X \rightarrow Y$ is nullhomotopic.

$(4)$

Every morphism of simplicial sets $g: Z \rightarrow X$ is nullhomotopic.

In particular, these conditions are satisfied in the special case where $X = \Delta ^{n}$ is a standard simplex.