Remark 3.5.1.2. It will sometimes be useful to extend Definition 3.5.1.1 to the case where $n$ is an arbitrary integer. By convention, if $n < 0$, then every Kan complex $X$ is $n$-connective.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$
Remark 3.5.1.2. It will sometimes be useful to extend Definition 3.5.1.1 to the case where $n$ is an arbitrary integer. By convention, if $n < 0$, then every Kan complex $X$ is $n$-connective.