Example 3.5.1.17. A morphism of simplicial sets $f: X \rightarrow Y$ is $0$-connective if and only if the induced map $\pi _0(f): \pi _0(X) \rightarrow \pi _0(Y)$ is surjective.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$
Example 3.5.1.17. A morphism of simplicial sets $f: X \rightarrow Y$ is $0$-connective if and only if the induced map $\pi _0(f): \pi _0(X) \rightarrow \pi _0(Y)$ is surjective.