Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 3.5.1.27. Let $Y$ be a simplicial set and let $n \geq -1$ be an integer. The following conditions are equivalent:

$(1)$

The simplicial set $Y$ is $n$-connective.

$(2)$

The simplicial set $Y$ is nonempty and, for every vertex $y \in Y$, the inclusion map $\{ y\} \hookrightarrow Y$ is $(n-1)$-connective.

$(3)$

There exists a vertex $y \in Y$ for which the inclusion map $\{ y\} \hookrightarrow Y$ is $(n-1)$-connective.