Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 3.5.2.5. Let $X$ be a Kan complex and let $n$ be an integer. The following conditions are equivalent:

$(1)$

The Kan complex $X$ is $n$-connective.

$(2)$

There exists a monomorphism of Kan complexes $f: X \hookrightarrow Y$ where $Y$ is contractible and $f$ is bijective on $k$-simplices for $0 \leq k \leq n$.

$(3)$

There exists a morphism of simplicial sets $f: X \rightarrow Y$ where $Y$ is $n$-connective, $f$ is bijective on $k$-simplices for $k < n$, and $f$ is surjective on $n$-simplices.

Proof. Apply Corollary 3.5.2.4 in the special case $Z = \Delta ^0$ (together with Example 3.5.1.18). $\square$