Proposition 3.5.3.17 (Uniqueness). Let $n$ be an integer and let $f: X \rightarrow Y$ be a morphism of simplicial sets, where $Y$ is $n$-coskeletal. The following conditions are equivalent:
- $(1)$
The morphism $f$ exhibits $Y$ as an $n$-coskeleton of $X$: that is, it is bijective on $m$-simplices for $m \leq n$.
- $(2)$
For every $n$-coskeletal simplicial set $Z$, composition with $f$ induces an isomorphism of simplicial sets $\operatorname{Fun}( Y, Z ) \rightarrow \operatorname{Fun}(X, Z)$.
- $(3)$
For every $n$-coskeletal simplicial set $Z$, composition with $f$ induces a bijection
\[ \operatorname{Hom}_{\operatorname{Set_{\Delta }}}(Y, Z) \rightarrow \operatorname{Hom}_{\operatorname{Set_{\Delta }}}(X, Z). \]