Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 3.5.6.14. Let $X$ be a Kan complex and let $n \geq 0$ be an integer. Then the comparison map $q: \operatorname{cosk}_{n}^{\circ }(X) \twoheadrightarrow \pi _{\leq n}(X)$ of Construction 3.5.6.10 is a trivial Kan fibration.

Proof. Fix an integer $m \geq 0$; we wish to show that every lifting problem

3.77
\begin{equation} \begin{gathered}\label{equation:coskeleton-vs-fundamental} \xymatrix@R =50pt@C=50pt{ \operatorname{\partial \Delta }^ m \ar [d] \ar [r]^-{\sigma _0} & \operatorname{cosk}^{\circ }_{n}(X) \ar [d]^{q} \\ \Delta ^ m \ar@ {-->}[ur] \ar [r]^-{\overline{\sigma }} & \pi _{\leq n}(X) } \end{gathered} \end{equation}

admits a solution.

Let $\sigma $ be any $m$-simplex of $\operatorname{cosk}_{n}^{\circ }(X)$ satisfying $q( \sigma ) = \overline{\sigma }$. By virtue of Remark 3.5.6.11, the commutativity of the diagram (3.77) guarantees that $\sigma _0$ and $\sigma $ coincide on the $(n-1)$-skeleton of $\operatorname{\partial \Delta }^{m}$. Consequently, if $m \leq n$, then $\sigma $ is a solution to the the lifting problem (3.77). We will therefore assume that $m > n$. In this case, the boundary $\operatorname{\partial \Delta }^{m}$ contains the $n$-skeleton of $\Delta ^{m}$. It will therefore suffice to show that $\sigma _0$ can be extended to an $m$-simplex $\sigma '$ of $\operatorname{cosk}_{n}^{\circ }(X)$: the commutativity of the diagram (3.77) guarantees that any such extension satisfies the identity $q( \sigma ' ) = \overline{\sigma }$ (Proposition 3.5.6.12). If $m \geq n+2$, then the existence of $\sigma '$ is automatic (since $\operatorname{cosk}^{\circ }_{n}(X)$ is $(n+1)$-coskeletal). It will therefore suffice to treat the case $m = n+1$. In this case, we can identify $\sigma _0$ with a morphism $\tau _0: \operatorname{\partial \Delta }^{n+1} \rightarrow X$, and we wish to show that $\tau _0$ is nullhomotopic. Note that $\sigma |_{ \operatorname{\partial \Delta }^{m} }$ determines a morphism $\tau _1: \operatorname{\partial \Delta }^{n+1} \rightarrow X$. Moreover, the commutativity of the diagram (3.77) guarantees that $\tau _0$ and $\tau _1$ are homotopic relative to $\operatorname{sk}_{n-1}( \Delta ^{n+1} )$ (Proposition 3.5.6.12). It will therefore suffice to show that $\tau _1$ is nullhomotopic, which follows from the existence of $\sigma $. $\square$