Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 3.5.7.1. Let $n$ be an integer. We say that a Kan complex $X$ is $n$-truncated if, for every integer $m \geq n+2$, every morphism of simplicial sets $\operatorname{\partial \Delta }^{m} \rightarrow X$ can be extended to an $m$-simplex of $X$.