Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 3.5.7.5. A Kan complex $X$ is $0$-truncated if and only if it satisfies any of the following equivalent conditions:

  • Every connected component of $X$ is contractible.

  • The projection map $X \twoheadrightarrow \pi _0(X)$ is a trivial Kan fibration of simplicial sets.

  • The projection map $X \twoheadrightarrow \pi _0(X)$ is a homotopy equivalence.

  • The Kan complex $X$ is homotopy equivalent to a discrete simplicial set.