Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 3.5.7.7. Let $X$ be a Kan complex and let $n \geq 0$ be an integer. Then $X$ is $n$-truncated if and only if it satisfies the following condition for every integer $m > n$:

$(\ast _ m)$

For every vertex $x \in X$, the homotopy group $\pi _{m}(X,x)$ is trivial.

Proof. Apply Lemma 3.2.4.13. $\square$