Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 3.5.9.7 (Symmetry). Let $f: X \rightarrow Y$ be a morphism of Kan complexes. Then $f$ is $n$-truncated if and only if the opposite morphism $f^{\operatorname{op}}: X^{\operatorname{op}} \rightarrow Y^{\operatorname{op}}$ is $n$-truncated. See Remark 3.2.2.20.