Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 3.5.9.17. Let $f: X \rightarrow Y$ be a Kan fibration between Kan complexes and let $n \geq -1$. Then $f$ is $n$-truncated if and only if the relative diagonal $\delta _{X/Y}: X \rightarrow X \times _{Y} X$ is $(n-1)$-truncated.

Proof. Apply Corollary 3.5.9.16 in the case $k = 1$. $\square$