Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 3.5.9.23. Let $f: X \rightarrow Y$ be a Kan fibration between Kan complexes and let $n$ be an integer. The following conditions are equivalent:

$(1)$

The morphism $f$ is $n$-truncated.

$(2)$

For every nonnegative integer $m \geq n+2$, the induced map

\[ \theta : \operatorname{Fun}( \Delta ^{m}, X) \rightarrow \operatorname{Fun}( \operatorname{\partial \Delta }^{m}, X) \times _{ \operatorname{Fun}( \operatorname{\partial \Delta }^{m}, Y) } \operatorname{Fun}( \Delta ^{m}, Y) \]

is a trivial Kan fibration.

$(3)$

For every nonnegative integer $m \geq n+2$, every lifting problem

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\partial \Delta }^{m} \ar [r] \ar [d] & X \ar [d]^{f} \\ \Delta ^{m} \ar@ {-->}[ur] \ar [r] & Y } \]

has a solution.

$(4)$

For every simplicial set $B$ and every simplicial subset $A \subseteq B$ which contains the $(n+1)$-skeleton $\operatorname{sk}_{n+1}(B)$, every lifting problem

\[ \xymatrix@R =50pt@C=50pt{ A \ar [r] \ar [d] & X \ar [d]^{f} \\ B \ar@ {-->}[ur] \ar [r] & Y } \]

admits a solution.

Proof. If $f$ is $n$-truncated, then it is also $n'$-truncated for every integer $n' \geq n$ (Remark 3.5.9.6). Consequently, the implication $(1) \Rightarrow (2)$ follows from Remark 3.5.9.21. The implication $(2) \Rightarrow (3)$ is immediate from the definitions, and the implication $(3) \Rightarrow (1)$ follows from Proposition 3.5.9.8. The equivalence $(3) \Leftrightarrow (4)$ follows from Proposition 1.1.4.12. $\square$