Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 4.3.3.30. Let $X$ be a simplicial set. Then, for every nonnegative integer $n$, the $n$-skeleton of the cone $X^{\triangleright }$ fits into a pushout diagram

\[ \xymatrix { \operatorname{sk}_{n-1}(X) \ar [r] \ar [d] & \operatorname{sk}_{n-1}(X)^{\triangleright } \ar [d] \\ \operatorname{sk}_{n}(X) \ar [r] & \operatorname{sk}_{n}(X)^{\triangleright }; } \]

see Remark 4.3.3.20. In particular, $X^{\triangleright }$ has dimension $\leq n$ if and only if $X$ has dimension $\leq n-1$.