Corollary 4.8.3.15. Let $X$ be a minimal Kan complex and let $n \geq 0$ be an integer. Then $X$ is $n$-reduced if and only if it is $(n+1)$-connective.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$
Corollary 4.8.3.15. Let $X$ be a minimal Kan complex and let $n \geq 0$ be an integer. Then $X$ is $n$-reduced if and only if it is $(n+1)$-connective.