Remark 4.8.6.5 (Symmetry). Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories and let $n$ be an integer. Then $F$ is essentially $n$-categorical if and only if the opposite functor $F^{\operatorname{op}}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{D}}^{\operatorname{op}}$ is essentially $n$-categorical. See Remark 4.8.5.14.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$