Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 4.8.6.22. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories, let $B$ be a simplicial set, and let $n$ be an integer. If $F$ is essentially $n$-categorical, then the induced functor $\operatorname{Fun}(B,\operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}(B,\operatorname{\mathcal{D}})$ is also essentially $n$-categorical.

Proof. Apply Corollary 4.8.6.21 in the special case $A = \emptyset $. $\square$