Remark 4.8.6.31 (Symmetry). Let $n$ be an integer and let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an $n$-categorical inner fibration of simplicial sets. Then the opposite map $F^{\operatorname{op}}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{D}}^{\operatorname{op}}$ is also an $n$-categorical inner fibration.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$