Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 4.8.7.11. Let $n$ be an integer, and suppose we are given a categorical pullback diagram of $\infty $-categories

\[ \xymatrix@C =50pt@R=50pt{ \operatorname{\mathcal{C}}' \ar [d]^{F'} \ar [r] & \operatorname{\mathcal{C}}\ar [d]^{F} \\ \operatorname{\mathcal{D}}' \ar [r]^-{G} & \operatorname{\mathcal{D}}. } \]

If $F$ is categorically $n$-connective, then $F'$ is categorically $n$-connective. The converse holds if $G$ is full and essentially surjective. See Corollary 4.8.5.29.