Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 4.8.8.25. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an inner fibration of $\infty $-categories and let $n$ be an integer. The following conditions are equivalent:

$(1)$

The comparison map $G: \mathrm{h}_{\mathit{\leq n}}\mathit{(\operatorname{\mathcal{C}}/\operatorname{\mathcal{D}})} \rightarrow \operatorname{\mathcal{D}}$ is an equivalence of $\infty $-categories.

$(2)$

The functor $F$ is categorically $(n+1)$-connective.

Proof. The implication $(1) \Rightarrow (2)$ follows from Proposition 4.8.8.14 and Remark 4.8.5.16. The reverse implication follows by applying Proposition 4.8.8.24 in the special case $\operatorname{\mathcal{E}}= \operatorname{\mathcal{D}}$. $\square$