Proposition 4.8.9.8. Let $f: A \hookrightarrow B$ be a monomorphism of simplicial sets and let $n$ be an integer. The following conditions are equivalent:
- $(1)$
The morphism $f$ is categorically $n$-connective.
- $(2)$
For every essentially $(n-1)$-categorical functor of $\infty $-categories $U: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$, the restriction map
\[ V: \operatorname{Fun}(B, \operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}(A, \operatorname{\mathcal{C}}) \times _{ \operatorname{Fun}(A, \operatorname{\mathcal{D}}) } \operatorname{Fun}(B, \operatorname{\mathcal{D}}) \]is an equivalence of $\infty $-categories.
- $(3)$
For every essentially $(n-1)$-categorical isofibration of $\infty $-categories $U: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$, the functor $V$ is a trivial Kan fibration.
- $(3)$
Every lifting problem
\[ \xymatrix@C =50pt@R=50pt{ A \ar [d] \ar [r] & \operatorname{\mathcal{C}}\ar [d]^{U} \\ B \ar@ {-->}[ur] \ar [r] & \operatorname{\mathcal{D}}} \]admits a solution, provided that $U$ is an essentially $(n-1)$-categorical isofibration of $\infty $-categories.