Example 5.6.2.20 (Elements of Diagram $\infty $-Categories). Let $\operatorname{\mathcal{C}}$ be a simplicial set and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ be a diagram. Fix another simplicial set $K$, and let $\mathscr {F}^{K}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ denote the composition of $\mathscr {F}$ with the functor
Let $\underline{K}_{\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}\rightarrow \operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{S}})$ denote the constant map taking the value $K$, so that Remark 5.6.2.18 and Example 5.6.2.17 supply a comparison map $\rho : K \times \operatorname{\mathcal{C}}\rightarrow \int _{\operatorname{\mathcal{C}}} \underline{K}_{\operatorname{\mathcal{C}}}$. The composition
is determines a commutative diagram
Here $U$ and $V$ are cocartesian fibrations, and Remark 5.6.2.14 guarantees that $T$ carries $U$-cocartesian edges to $V$-cocartesian edges. Moreover, for each vertex $C \in \operatorname{\mathcal{C}}$, the induced map of fibers $T_{C}: U^{-1} \{ C\} \rightarrow V^{-1} \{ C\} $ fits into a commutative diagram
where the vertical maps are equivalences by virtue of Example 5.6.2.19. It follows that $T$ is an equivalence of cocartesian fibrations over $\operatorname{\mathcal{C}}$ (see Proposition 5.1.7.15).