Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 1.4.6.4. Let $f: A_{\bullet } \rightarrow B_{\bullet }$ be a morphism of simplicial sets. We will say that $f$ is inner anodyne if it belongs to the weakly saturated class of morphisms generated by the collection of all inner horn inclusions $\Lambda ^{n}_{i} \hookrightarrow \Delta ^ n$ (so that $0 < i < n$).