Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 1.4.6.5. Let $f: A_{\bullet } \rightarrow B_{\bullet }$ be an inner anodyne map of simplicial sets. Then $f$ is a monomorphism. This follows from the observation that the collection of monomorphisms is weakly saturated (Proposition 1.4.5.13), since every inner horn inclusion $\Lambda ^ n_ i \hookrightarrow \Delta ^ n$ is a monomorphism.