Example 2.1.7.2 (Categories Enriched Over Sets). Let $\operatorname{\mathcal{A}}= \operatorname{Set}$ be the category of sets, endowed with the monoidal structure given by the cartesian product (see Example 2.1.3.2). Then an $\operatorname{\mathcal{A}}$-enriched category (in the sense of Definition 2.1.7.1) can be identified with a category in the usual sense.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$