Remark 2.2.2.3. Let $\operatorname{\mathcal{C}}$ be a category which admits finite limits, and let $\mathbf{1}$ denote a final object of $\operatorname{\mathcal{C}}$. Then the endomorphism category $\underline{\operatorname{End}}_{ \operatorname{Span}(\operatorname{\mathcal{C}}) }( \mathbf{1} )$ can be identified with the category $\operatorname{\mathcal{C}}$ itself, equipped with the Cartesian monoidal structure of Example 2.1.3.2.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$