Proposition 2.4.6.12. Let $n$ be a positive integer and let $F: \operatorname{Path}[ \partial \Delta ^ n ]_{\bullet } \rightarrow \operatorname{Path}[ \Delta ^ n ]_{\bullet }$ be the simplicial functor induced by the boundary inclusion $\partial \Delta ^ n \hookrightarrow \Delta ^ n$. Then:
- $(a)$
The functor $F$ is bijective on objects; in particular, we can identify objects of $\operatorname{Path}[ \operatorname{\partial \Delta }^ n ]_{\bullet }$ with elements of the set $[n] = \{ 0 < 1 < \cdots < n \} $.
- $(b)$
For $(j,k) \neq (0,n)$, the functor $F$ induces an isomorphism of simplicial sets
\[ \operatorname{Hom}_{ \operatorname{Path}[ \partial \Delta ^ n ] }(j, k)_{\bullet } \simeq \operatorname{Hom}_{ \operatorname{Path}[ \Delta ^ n ] }(j, k)_{\bullet }. \]- $(c)$
The functor $F$ induces a monomorphism of simplicial sets $\operatorname{Hom}_{ \operatorname{Path}[ \partial \Delta ^ n ] }(0,n)_{\bullet } \hookrightarrow \operatorname{Hom}_{ \operatorname{Path}[ \Delta ^ n ] }(0,n)_{\bullet }$, whose image can be identified with the boundary $\operatorname{\partial \raise {0.1ex}{\square }}^{n-1} \subseteq \operatorname{\raise {0.1ex}{\square }}^{n-1} \simeq \operatorname{Hom}_{ \operatorname{Path}[\Delta ^ n]}(0,n)_{\bullet }$ introduced in Notation 2.4.5.5.