Proof of Theorem 3.2.7.1.
Let $f: X \rightarrow Y$ be a morphism of Kan complexes. Assume that the induced map $\pi _0(f): \pi _0(X) \rightarrow \pi _0(Y)$ is a bijection and that, for every vertex $x \in X$ having image $y = f(x)$ in $Y$, the induced map $\pi _{n}(f): \pi _{n}(X,x) \rightarrow \pi _{n}(Y,y)$ is an isomorphism. We wish to prove that $f$ is a homotopy equivalence (the converse implication follows from Corollary 3.2.7.3). By virtue of Proposition 3.1.7.1, we can assume that $f$ factors as a composition $X \xrightarrow {f'} Q \xrightarrow {f''} Y$, where $f'$ is anodyne and $f''$ is a Kan fibration. Note that $Q$ is automatically a Kan complex (since $Y$ is a Kan complex and $f''$ is a Kan fibration). Moreover, the anodyne morphism $f'$ is a weak homotopy equivalence (Proposition 3.1.6.14) between Kan complexes, and is therefore a homotopy equivalence (Proposition 3.1.6.13). Consequently, to show that $f$ is a homotopy equivalence, it will suffice to show that $f''$ is a homotopy equivalence (Remark 3.1.6.7). In fact, we claim that $f''$ is a trivial Kan fibration. By virtue of Proposition 3.2.6.15, it will suffice to show that for every vertex $y \in Y$, the Kan complex $Q_{y} = \{ y\} \times _{Y} Q$ is contractible. Since $\pi _0(f)$ is a bijection, there exists a vertex $x \in X$ such that $f(x)$ and $y$ belong to the same connected component of $Y$. Since $f''$ is a Kan fibration, the Kan complexes $Q_{y}$ and $Q_{f(x)}$ are homotopy equivalent (see Theorem 5.2.2.19). We may therefore assume without loss of generality that $y = f(x)$. Set $q = f'(x) \in Q$. Using the criterion of Proposition 3.2.6.14, we are reduced to proving that the set $\pi _{n}( Q_{f(x)}, q)$ is a singleton for each $n \geq 0$. Using the exact sequence
\[ \cdots \rightarrow \pi _{2}(Y,y) \xrightarrow {\partial } \pi _{1}(Q_ y, q) \rightarrow \pi _{1}( Q, q) \rightarrow \pi _1(Y,y) \xrightarrow {\partial } \pi _{0}(Q_ y, q) \rightarrow \pi _0( Q,q) \rightarrow \pi _0(Y,y) \]
of Theorem 3.2.5.1, we are reduced to proving that each of the maps $\pi _{n}(f''): \pi _{n}(Q,q) \rightarrow \pi _{n}(Y,y)$ is bijective. This follows from the commutativity of the diagram
\[ \xymatrix@R =50pt@C=50pt{ \pi _{n}(X,x) \ar [rr] \ar [dr] & & \pi _{n}(Q,q) \ar [dl] \\ & \pi _{n}(Y,y), & } \]
since the left vertical map is bijective by assumption and the upper horizontal map is bijective by virtue of Corollary 3.2.7.3.
$\square$