Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 3.3.9.2. Suppose we are given a tower of simplicial sets

\[ \cdots \xrightarrow {q_3} X(3) \xrightarrow {q_2} X(2) \xrightarrow {q_1} X(1) \xrightarrow {q_0} X(0). \]

If $X(0)$ is a Kan complex and each $q_ n$ is a Kan fibration, then the inverse limit $X = \varprojlim _{n \geq 0} X(n)$ is a Kan complex.