Proposition 11.9.5.1. Let $X$ be the inverse limit of a tower of simplicial sets
If each of the morphisms $q_ n$ is a Kan fibration, then the canonical map $q: X \rightarrow X(0)$ is a Kan fibration.
We now study the behavior of Kan complexes with respect to inverse limits.
Proposition 11.9.5.1. Let $X$ be the inverse limit of a tower of simplicial sets If each of the morphisms $q_ n$ is a Kan fibration, then the canonical map $q: X \rightarrow X(0)$ is a Kan fibration.
Proof. This is a special case of Proposition 1.5.4.11 (which guarantees that the collection of all Kan fibrations is closed under transfinite composition in the opposite of the category of simplicial sets). $\square$
Corollary 11.9.5.2. Suppose we are given a tower of simplicial sets If $X(0)$ is a Kan complex and each $q_ n$ is a Kan fibration, then the inverse limit $X = \varprojlim _{n \geq 0} X(n)$ is a Kan complex.
Proof. Combine Proposition 11.9.5.1 with Remark 3.1.1.11. $\square$
Variant 11.9.5.3. Let $X$ be the inverse limit of a tower of simplicial sets If each of the morphisms $q_ n$ is a trivial Kan fibration, then the canonical map $q: X \rightarrow X(0)$ is a trivial Kan fibration.
Proof. By virtue of Proposition 1.5.4.11, the collection of trivial Kan fibrations is closed under transfinite composition in the opposite of the category of simplicial sets. $\square$
Corollary 11.9.5.4. Let $X$ be the inverse limit of a tower of simplicial sets Assume that each of the simplicial sets $X(n)$ is weakly contractible and that each of the morphisms $q_ n$ is a Kan fibration. Then the inverse limit $X = \varprojlim _{n \geq 0} X(n)$ is weakly contractible.
Proof. If each of these simplicial sets $X(n)$ is weakly contractible, then each of the morphisms $q_ n: X(n+1) \rightarrow X(n)$ is a weak homotopy equivalence. Applying Proposition 3.3.7.6, we conclude that each $q_ n$ is a trivial Kan fibration. Variant 11.9.5.3 then guarantees that the projection map $X \rightarrow X(0)$ is also a trivial Kan fibration. Since $X(0)$ is weakly contractible, it follows that $X$ is also weakly contractible. $\square$
Corollary 11.9.5.5. Let $X$ be the inverse limit of a tower of simplicial sets Assume that each of the simplicial sets $X(n)$ is a contractible Kan complex and that each of the morphisms $q_ n$ is a Kan fibration. Then the inverse limit $X = \varprojlim _{n \geq 0} X(n)$ is a contractible Kan complex.
Proposition 11.9.5.6. Suppose we are given a commutative diagram of Kan complexes Assume that for each $n \geq 0$, the morphisms $p_ n$ and $q_ n$ are Kan fibrations, and the morphism $f_ n$ is a homotopy equivalence. Then the induced map $f: \varprojlim \{ X(n) \} _{n \geq 0} \rightarrow \varprojlim \{ Y(n) \} _{n \geq 0}$ is a homotopy equivalence of Kan complexes.
Proof. Set $X = \varprojlim \{ X(n) \} _{n \geq 0}$ and $Y = \varprojlim \{ Y(n) \} _{n \geq 0}$, so that $X$ and $Y$ are Kan complexes (Corollary 11.9.5.2). By virtue of Remark 3.4.0.6, it will suffice to show that for each vertex $y \in Y$, the homotopy fiber $F = X \times ^{\mathrm{h}}_{Y} \{ y\} $ is a contractible Kan complex. For each $n \geq 0$, set $F(n) = X(n) \times ^{\mathrm{h}}_{Y(n)} \{ y\} $, so that $F$ can be identified with the limit $\varprojlim \{ F(n) \} _{n \geq 0}$. Since $f_{n}$ is a homotopy equivalence, $F(n)$ is a contractible Kan complex (Remark 3.4.0.6). By virtue of Corollary None, it will suffice to show that each of the transition maps $\theta _{n}: F(n+1) \rightarrow F(n)$ is a Kan fibration. Unwinding the definitions, we see that $\theta _{n}$ factors as a composition
Here $\theta '$ is a pullback of the map $p_{n}$ (and therefore a Kan fibration by assumption), while $\theta ''$ is a pullback of the map
and is therefore a Kan fibration by virtue of Theorem 3.1.3.1. $\square$