Theorem 4.6.4.17. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $F: K \rightarrow \operatorname{\mathcal{C}}$ be a diagram. Then the slice and coslice diagonal maps
are equivalences of $\infty $-categories.
Theorem 4.6.4.17. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $F: K \rightarrow \operatorname{\mathcal{C}}$ be a diagram. Then the slice and coslice diagonal maps
are equivalences of $\infty $-categories.
Proof of Theorem 4.6.4.17. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $F: K \rightarrow \operatorname{\mathcal{C}}$ be a diagram, which we regard as an object of the $\infty $-category $\operatorname{Fun}(K,\operatorname{\mathcal{C}})$. We will show that the slice diagonal morphism
is an equivalence of $\infty $-categories; the corresponding assertion for the coslice diagonal morphism follows by a similar argument. Fix a simplicial set $J$; we wish to show that the induced map of sets
is a bijection. Using Lemma 4.6.4.21 and Remark 4.6.4.14, we can identify $\theta $ with the map of sets
induced by precomposition with the comparison map $c_{J,K}: J \diamond K \twoheadrightarrow J \star K$ of Notation 4.5.8.3. It will therefore suffice to show that composition with $c_{J,K}$ induces an equivalence of $\infty $-categories $\operatorname{Fun}_{K/}( J \star K, \operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}_{K/}( J \diamond K, \operatorname{\mathcal{C}})$. This follows by applying Corollary 4.5.2.32 to the commutative diagram
here the vertical maps are isofibrations (Corollary 4.4.5.3) and the upper horizontal map is an equivalence of $\infty $-categories because the morphism $c_{J,K}$ is a categorical equivalence (Theorem 4.5.8.8). $\square$