Theorem 4.6.5.14. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $X$ be an object of $\operatorname{\mathcal{C}}$. Then the pinch inclusion maps
are equivalences of $\infty $-categories.
Theorem 4.6.5.14. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $X$ be an object of $\operatorname{\mathcal{C}}$. Then the pinch inclusion maps
are equivalences of $\infty $-categories.
Proof of Theorem 4.6.5.14. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing an object $X$. We will show that the left-pinch inclusion morphism $\iota ^{\mathrm{L}}_{X}: \operatorname{\mathcal{C}}_{X/} \hookrightarrow (X \downarrow \operatorname{\mathcal{C}})$ is an equivalence of $\infty $-categories; the analogous statement for $\iota ^{\mathrm{R}}_{X}$ follows by a similar argument. Let $K$ be a simplicial set and
be the map induced by composition with $\iota ^{\mathrm{L}}_{X}$; we wish to show that $\rho $ is a bijection. Using Lemma 4.6.5.15 and Remark 4.6.5.8, we can identify $\rho $ with the map
given by composition with the comparison map $c: \{ x\} \diamond K \rightarrow \{ x\} \star K$. We will complete the proof by showing that composition with $c$ induces an equivalence of $\infty $-categories $\operatorname{Fun}_{ \{ x\} / }( \{ x\} \star K, \operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}_{ \{ x\} }( \{ x\} \diamond K, \operatorname{\mathcal{C}})$. This follows by applying Corollary 4.5.4.4 to the commutative diagram
here the vertical maps are isofibrations (Corollary 4.4.5.3) and the upper horizontal map is an equivalence of $\infty $-categories by Proposition 4.5.2.8 (and the fact that $c$ is a categorical equivalence, by Theorem 4.5.5.7). $\square$