Proposition 4.6.5.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the pinch inclusion morphisms
are homotopy equivalences of Kan complexes.
Proposition 4.6.5.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the pinch inclusion morphisms
are homotopy equivalences of Kan complexes.
Proof. We will prove that the left-pinch inclusion morphism $\iota ^{\mathrm{L}}_{X,Y}$ is a homotopy equivalence; the proof for the right-pinch inclusion morphism $\iota ^{\mathrm{R}}_{X,Y}$ is similar. Note that we have a commutative diagram of $\infty $-categories
where the horizontal maps are equivalences of $\infty $-categories (Corollary 4.6.4.18) and the vertical maps are left fibrations (Propositions 4.3.6.1 and 4.6.4.11), hence isofibrations (Example 4.4.1.11). Applying Corollary 4.5.2.32, we deduce that the induced map of fibers
is an equivalence of $\infty $-categories, hence a homotopy equivalence of Kan complexes (Remark 4.5.1.4). $\square$