Construction 4.6.5.1. Let $\operatorname{\mathcal{C}}$ be a simplicial set containing vertices $X$ and $Y$. We let $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{L}}(X,Y)$ denote the fiber product $\operatorname{\mathcal{C}}_{X/} \times _{\operatorname{\mathcal{C}}} \{ Y\} $, and we let $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{R}}(X,Y)$ denote the fiber product $\{ X\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/Y}$. We will be primarily interested in these constructions in the situation where $\operatorname{\mathcal{C}}$ is an $\infty $-category. In this case, we refer to $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{L}}(X,Y)$ as the left-pinched space of morphisms from $X$ to $Y$ and to $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{R}}(X,Y)$ as the right-pinched space of morphisms from $X$ to $Y$.
4.6.5 Pinched Morphism Spaces
Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. In ยง4.6.1, we associated to every pair of objects $X,Y \in \operatorname{\mathcal{C}}$ a Kan complex $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$, which we refer to as the space of morphisms from $X$ to $Y$ (Construction 4.6.1.1). In this section, we discuss a variant of this construction which is often more technically convenient to work with.
Remark 4.6.5.2. Let $\operatorname{\mathcal{C}}$ be a simplicial set containing vertices $X$ and $Y$. For every integer $n \geq 0$, one can identify $n$-simplices of the left-pinched morphism space $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{L}}(X,Y)$ with $(n+1)$-simplices $\sigma : \Delta ^{n+1} \rightarrow \operatorname{\mathcal{C}}$ for which $\sigma (0) = X$ and the face $d^{n+1}_0(\sigma )$ is the constant map $\Delta ^{n} \rightarrow \{ Y\} \hookrightarrow \operatorname{\mathcal{C}}$. Similarly, one can identify $n$-simplices of the right-pinched morphism space $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{R}}(X,Y)$ with $(n+1)$-simplices $\sigma ': \Delta ^{n+1} \rightarrow \operatorname{\mathcal{C}}$ for which $\sigma (n+1) = Y$ and the face $d^{n+1}_{n+1}(\sigma )$ is the constant map $\Delta ^{n} \rightarrow \{ X\} \hookrightarrow \operatorname{\mathcal{C}}$. In particular, we have canonical bijections
Remark 4.6.5.3. Let $\operatorname{\mathcal{C}}$ be a simplicial set containing vertices $X$ and $Y$, which we also regard as vertices of the opposite simplicial set $\operatorname{\mathcal{C}}^{\operatorname{op}}$. Then we have canonical isomorphisms of simplicial sets
Remark 4.6.5.4. Let $\operatorname{\mathcal{C}}$ be a simplicial set, let $n \geq 0$ be an integer, and let $\operatorname{cosk}_{n}(\operatorname{\mathcal{C}})$ denote the $n$-coskeleton of $\operatorname{\mathcal{C}}$ (Notation 3.5.3.18). For every pair of vertices $X,Y \in \operatorname{\mathcal{C}}$, Remark 4.3.5.16 supplies canonical isomorphisms Passing to fibers over the vertices $Y$ and $X$, we obtain isomorphisms of pinched morphism spaces In particular, if $\operatorname{\mathcal{C}}$ is $n$-coskeletal, then the pinched morphism spaces $\operatorname{Hom}^{\mathrm{L}}_{\operatorname{\mathcal{C}}}(X,Y)$ and $\operatorname{Hom}^{\mathrm{R}}_{\operatorname{\mathcal{C}}}(X,Y)$ are $(n-1)$-coskeletal.
Proposition 4.6.5.5. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the pinched morphism spaces $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{L}}(X,Y)$ and $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{R}}(X,Y)$ are Kan complexes.
Proof. By virtue of Proposition 4.3.6.1, the projection map $\operatorname{\mathcal{C}}_{X/} \rightarrow \operatorname{\mathcal{C}}$ is a left fibration. Applying Corollary 4.4.2.3, we deduce that the fiber $\operatorname{Hom}^{\mathrm{L}}_{\operatorname{\mathcal{C}}}(X,Y) = \operatorname{\mathcal{C}}_{X/} \times _{\operatorname{\mathcal{C}}} \{ Y\} $ is a Kan complex. A similar argument shows that $\operatorname{Hom}^{\mathrm{R}}_{\operatorname{\mathcal{C}}}(X,Y)$ is a Kan complex. $\square$
Remark 4.6.5.6. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing a pair of morphisms $f,g: X \rightarrow Y$ having the same source and target. Then the datum of an edge $e: f \rightarrow g$ in the left-pinched morphism space $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{L}}(X,Y)$ is equivalent to the datum of a homotopy from $f$ to $g$, in the sense of Definition 1.4.3.1. In particular, $f$ and $g$ are homotopic if and only if they belong to the same connected component of $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{L}}(X,Y)$. We therefore have a canonical bijection $\operatorname{Hom}_{\mathrm{h} \mathit{\operatorname{\mathcal{C}}}}(X,Y) \simeq \pi _0( \operatorname{Hom}^{\mathrm{L}}_{\operatorname{\mathcal{C}}}(X,Y) )$.
We now compare the pinched morphism spaces of Construction 4.6.5.1 with the morphism spaces of Construction 4.6.1.1.
Construction 4.6.5.7. Let $\operatorname{\mathcal{C}}$ be a simplicial set containing vertices $X$ and $Y$, and let be the coslice and slice diagonal morphisms of Construction 4.6.4.13. Restricting to the fibers over the objects $Y,X \in \operatorname{\mathcal{C}}$, we obtain morphisms of Kan complexes which we will denote by $\iota ^{\mathrm{L}}_{X,Y}$ and $\iota ^{\mathrm{R}}_{X,Y}$, respectively. We will refer to $\iota ^{\mathrm{L}}_{X,Y}$ as the left-pinch inclusion map and to $\iota ^{\mathrm{R}}_{X,Y}$ as the right-pinch inclusion map.
Remark 4.6.5.8. Let $\operatorname{\mathcal{C}}$ be a simplicial set containing vertices $X$ and $Y$. Then the pinch inclusion maps are monomorphisms (see Remark 4.6.4.15).
Remark 4.6.5.9. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing objects $X$ and $Y$. Then the pinch inclusion maps are bijective on vertices: vertices of each simplicial set can be identified with morphisms from $X$ to $Y$ in the $\infty $-category $\operatorname{\mathcal{C}}$ (Remarks 4.6.1.2 and 4.6.5.2). However, they are generally not bijective on edges. Note that edges of the simplicial set $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ can be identified with diagrams in the $\infty $-category $\operatorname{\mathcal{C}}$. Such a diagram belongs to the image of the left-pinch inclusion map $\iota ^{\mathrm{L}}_{X,Y}$ if and only $\tau = s_0( g )$ (so that the simplex $\tau $ is degenerate, $f' = g$, and the entire diagram is determined by $\sigma $). Similarly, the diagram belongs to the image of the right-pinch inclusion map $\iota ^{\mathrm{R}}_{X,Y}$ if and only if $\sigma = s_1(g)$ (so that the simplex $\sigma $ is degenerate, $f = g$, and the entire diagram is determined by $\tau $).
Proposition 4.6.5.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the pinch inclusion morphisms are homotopy equivalences of Kan complexes.
Proof. We will prove that the left-pinch inclusion morphism $\iota ^{\mathrm{L}}_{X,Y}$ is a homotopy equivalence; the proof for the right-pinch inclusion morphism $\iota ^{\mathrm{R}}_{X,Y}$ is similar. Note that we have a commutative diagram of $\infty $-categories
where the horizontal maps are equivalences of $\infty $-categories (Corollary 4.6.4.18) and the vertical maps are left fibrations (Propositions 4.3.6.1 and 4.6.4.11), hence isofibrations (Example 4.4.1.11). Applying Corollary 4.5.2.32, we deduce that the induced map of fibers
is an equivalence of $\infty $-categories, hence a homotopy equivalence of Kan complexes (Remark 4.5.1.4). $\square$
Corollary 4.6.5.11. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor between $\infty $-categories. The following conditions are equivalent:
The functor $F$ is fully faithful. That is, for every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the functor $F$ induces a homotopy equivalence of Kan complexes $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}}(F(X), F(Y) )$.
For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the functor $F$ induces a homotopy equivalence of left-pinched morphism spaces $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{L}}(X,Y) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}}^{\mathrm{L}}( F(X), F(Y) )$.
For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the functor $F$ induces a homotopy equivalence of right-pinched morphism spaces $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{R}}(X,Y) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}}^{\mathrm{R}}( F(X), F(Y) )$.
Example 4.6.5.12. Let $\operatorname{\mathcal{C}}$ be an ordinary category containing objects $X$ and $Y$. Then the slice and coslice diagonal morphisms are isomorphisms (see Remark 4.3.1.7). In particular, we can identify the pinched morphism spaces $\operatorname{Hom}_{\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})}^{\mathrm{L}}(X,Y)$ and $\operatorname{Hom}_{\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})}^{\mathrm{R}}(X,Y)$ with the constant simplicial set $\operatorname{Hom}_{\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})}(X,Y)$ associated to the usual morphism set $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$.
Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing a pair of objects $X$ and $Y$. By virtue of Proposition 4.6.5.10, the pinched morphism spaces $\operatorname{Hom}^{\mathrm{L}}_{\operatorname{\mathcal{C}}}(X,Y)$ and $\operatorname{Hom}^{\mathrm{R}}_{\operatorname{\mathcal{C}}}(X,Y)$ of Construction 4.6.5.1 contain the same homotopy-theoretic information as the morphism space $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ of Construction 4.6.1.1. However, they package this information in a more efficient way: an $n$-simplex of the Kan complex $\operatorname{Hom}^{\mathrm{L}}_{\operatorname{\mathcal{C}}}(X,Y)$ can be identified with a single $(n+1)$-simplex of the $\infty $-category $\operatorname{\mathcal{C}}$ (see Remark 4.6.5.2), but to specify an $n$-simplex of $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ one must supply $n+1$ different $(n+1)$-simplices of $\operatorname{\mathcal{C}}$ (see Remark 4.6.5.9 for the case $n=1$).
Example 4.6.5.13 (Pinched Morphism Spaces in the Duskin Nerve). Let $\operatorname{\mathcal{C}}$ be a $2$-category (Definition 2.2.1.1). For each integer $n \geq 0$, we can use Remark 2.3.1.8 to identify $(n+1)$-simplices $\sigma $ of the Duskin nerve $\operatorname{N}_{\bullet }^{\operatorname{D}}( \operatorname{\mathcal{C}})$ with the following data:
A collection of objects $\{ Z_ i \} _{ 0 \leq i \leq n+1}$ of the $2$-category $\operatorname{\mathcal{C}}$.
A collection of $1$-morphisms $\{ f_{j,i}: Z_ i \rightarrow Z_ j \} _{0 \leq i \leq j \leq n+1 }$ in the $2$-category $\operatorname{\mathcal{C}}$, satisfying $f_{j,i} = \operatorname{id}_{ Z_ i }$ when $i = j$.
A collection of $2$-morphisms $\{ \mu _{k,j,i}: f_{k,j} \circ f_{j,i} \Rightarrow f_{k,i} \} _{0 \leq i \leq j \leq k \leq n+1}$ in the $2$-category $\operatorname{\mathcal{C}}$, satisfying some additional constraints (see $(b)$ and $(c)$ of Proposition 2.3.1.9).
Fix a pair of objects $X$ and $Y$. Then $\sigma $ represents an $n$-simplex of the right pinched morphism space $\operatorname{Hom}^{\mathrm{R}}_{ \operatorname{N}_{\bullet }^{\operatorname{D}}(\operatorname{\mathcal{C}}) }( X, Y)$ if and only if the above data satisfies the following additional conditions:
For $0 \leq i \leq n$, the object $Z_ i$ is equal to $X$. For $i = n+1$, the object $Z_{i}$ is equal to $Y$.
For $0 \leq i \leq j \leq n$, the $1$-morphism $f_{j,i}$ is equal to the identity $1$-morphism $\operatorname{id}_{X}$.
For $0 \leq i \leq j \leq k \leq n$, the $2$-morphism $\mu _{k,j,i}$ is equal to the unit constraint $\upsilon : \operatorname{id}_{X} \circ \operatorname{id}_{X} \Rightarrow \operatorname{id}_{X}$.
In this case, we can identify $(1)$ with a collection of $1$-morphisms $\{ g_ i: X \rightarrow Y \} _{0 \leq i \leq n}$ given by $g_ i = f_{n+1,i}$, and $(2)$ with a collection of $2$-morphisms $\{ \nu _{j,i}: g_ j \Rightarrow g_ i \} _{ 0 \leq i \leq j \leq n}$, where $\nu _{j,i}$ is given by the composition
Unwinding the definitions, condition $(b)$ translates to the requirement that $\nu _{j,i}$ is an identity $2$-morphism when $i = j$, and condition $(c)$ translates to the identity $\nu _{k,j} \circ \nu _{j,i} = \nu _{k,i}$ for $0 \leq i \leq j \leq k \leq n$. In this case, we can identify the pair $( \{ g_ i \} _{0 \leq i \leq n}, \{ \nu _{j,i} \} _{0 \leq i \leq j \leq n} )$ with a functor $[n] \rightarrow \underline{\operatorname{Hom}}_{\operatorname{\mathcal{C}}}(X,Y)^{\operatorname{op}}$. These identifications depends functorially on $[n] \in \operatorname{{\bf \Delta }}$, and therefore determine a canonical isomorphism of simplicial sets
Using similar reasoning, we obtain an isomorphism of simplicial sets
Example 4.6.5.14. Let $X$ be a topological space containing a pair of points $x$ and $y$, which we regard as objects of the $\infty $-category $\operatorname{Sing}_{\bullet }(X)$. Using Example 4.3.5.9, we obtain canonical isomorphisms of Kan complexes where $P_{x,y}$ denotes the topological space of continuous paths $p: [0,1] \rightarrow X$ satisfying $p(0) = x$ and $p(1) = y$ (equipped with the compact-open topology). Combining this observation with Example 4.6.1.5, we can identify the pinch inclusion maps $\iota ^{\mathrm{L}}_{x,y}$ and $\iota ^{\mathrm{R}}_{x,y}$ with monomorphisms from the simplicial set $\operatorname{Sing}_{\bullet }( P_{x,y} )$ to itself. Beware that these maps are not the identity (though one can show that they are homotopic to the identity).
Example 4.6.5.15 (Pinched Morphism Spaces in the Differential Graded Nerve). Let $\operatorname{\mathcal{C}}$ be a differential graded category (Definition 2.5.2.1), let $\operatorname{N}_{\bullet }^{\operatorname{dg}}(\operatorname{\mathcal{C}})$ denote the differential graded nerve of $\operatorname{\mathcal{C}}$ (Definition 2.5.3.7), and let $X$ and $Y$ be objects of $\operatorname{\mathcal{C}}$ (which we also view as objects of the $\infty $-category $\operatorname{N}_{\bullet }^{\operatorname{dg}}(\operatorname{\mathcal{C}})$), and let $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{\ast }$ denote the chain complex of morphisms from $X$ to $Y$. For $n \geq 0$, we can identify $n$-simplices of the left-pinched morphism space $\operatorname{Hom}^{\mathrm{L}}_{\operatorname{N}_{\bullet }^{\operatorname{dg}}(\operatorname{\mathcal{C}})}(X,Y)$ with $(n+1)$-simplices $\sigma : \Delta ^{n+1} \rightarrow \operatorname{N}_{\bullet }^{\operatorname{dg}}(\operatorname{\mathcal{C}})$ for which $\sigma (0) = X$ and $d^{n+1}_0(\sigma )$ is the constant $n$-simplex with the value $Y$ (Remark 4.6.5.2). Concretely, such a simplex can be described as a datum $I \mapsto f_{I}$, defined for each subset $I = \{ i_0 > i_1 > i_2 > \cdots > i_ k > i_{k+1} \} \subseteq [n+1]$ having at least two elements, with the following properties:
If $i_{k+1} > 0$, then $f_{I}$ is an element of the abelian group $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y,Y)_{k}$, which is equal to $\operatorname{id}_ Y$ in the case $k=0$ and vanishes for $k > 0$.
If $i_{k+1} = 0$, then $f_{I}$ is an element of the abelian group $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{k}$ which satisfies the identity
Note that, by virtue of $(1)$, we can rewrite this identity as
Let $J = \{ j_0 < j_1 < \cdots < j_ k \} $ be a nonempty subset of $[n]$. For $\{ f_ I \} $ as above, define $g_{J} \in \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{k}$ by the formula $g_ J = (-1)^{k(k-1)/2} f_{ \{ j_ k + 1 > j_{k-1} + 1 > \cdots > 0 \} }$. We can then rewrite the identity (4.56) as
The construction $J \mapsto g_{J}$ can then be identified with a morphism from the normalized chain complex $\mathrm{N}_{\ast }( \Delta ^ n)$ of Construction 2.5.5.9 to the chain complex $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{\bullet }$. This identification depends functorially on $n$, and therefore determines an isomorphism of simplicial sets
where $\mathrm{K}( \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{\ast } )$ denotes the Eilenberg-MacLane space associated to the chain complex $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{\ast }$ (Construction 2.5.6.3). In particular, the left-pinched morphism space $\operatorname{Hom}^{\mathrm{L}}_{\operatorname{N}_{\bullet }^{\operatorname{dg}}(\operatorname{\mathcal{C}})}( X, Y)$ has the structure of a simplicial abelian group.