4.6.1 Morphism Spaces
Let $\operatorname{\mathcal{C}}$ be a category. To every pair of objects $X,Y \in \operatorname{Ob}(\operatorname{\mathcal{C}})$, one can associate a set $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ of morphisms from $X$ to $Y$. Our goal in this section is to explain a counterpart of this construction in the setting of $\infty $-categories.
Construction 4.6.1.1. Let $\operatorname{\mathcal{C}}$ be a simplicial set containing a pair of vertices $X$ and $Y$. We let $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ denote the simplicial set given by the fiber product
\[ \{ X\} \times _{ \operatorname{Fun}(\{ 0\} , \operatorname{\mathcal{C}}) } \operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{C}}) \times _{ \operatorname{Fun}( \{ 1\} , \operatorname{\mathcal{C}}) } \{ Y\} . \]
We will typically be interested in this construction only in the case where $\operatorname{\mathcal{C}}$ is an $\infty $-category; if this condition is satisfied, we will refer to $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ as the space of morphisms from $X$ to $Y$.
Variant 4.6.1.3 (Endomorphism Spaces). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing an object $X$. We let $\operatorname{End}_{\operatorname{\mathcal{C}}}(X)$ denote the simplicial set
\[ \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,X) = \{ X\} \times _{\operatorname{\mathcal{C}}} \operatorname{Fun}( \Delta ^1 / \operatorname{\partial \Delta }^1, \operatorname{\mathcal{C}}). \]
We will refer to $\operatorname{End}_{\operatorname{\mathcal{C}}}(X)$ as the space of endomorphisms of $X$. Note that vertices of the simplicial set $\operatorname{End}_{\operatorname{\mathcal{C}}}(X)$ can be identified with endomorphisms of $X$, in the sense of Definition 1.4.1.5
Example 4.6.1.4. Let $\operatorname{\mathcal{C}}$ be an ordinary category containing objects $X$ and $Y$, which we will identify with objects of the $\infty $-category $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$. Then the morphism space $\operatorname{Hom}_{ \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( X, Y)$ of Construction 4.6.1.1 can be identified with the constant simplicial set having the value $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ (see Example 4.6.4.6). In particular, when $X = Y$ we can identify the simplicial set $\operatorname{End}_{ \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }(X) = \operatorname{Hom}_{ \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( X, X)$ with the endomorphism monoid $\operatorname{End}_{\operatorname{\mathcal{C}}}(X)$ of Example 1.3.2.2.
Example 4.6.1.5. Let $X$ be a topological space containing a pair of points $x$ and $y$, which we regard as objects of the $\infty $-category $\operatorname{Sing}_{\bullet }(X)$. Then we have a canonical isomorphism of Kan complexes
\[ \operatorname{Hom}_{ \operatorname{Sing}_{\bullet }(X) }(x, y) \simeq \operatorname{Sing}_{\bullet }( P_{x,y} ), \]
where $P_{x,y}$ denotes the topological space of continuous paths $p: [0,1] \rightarrow X$ satisfying $p(0) = x$ and $p(1) = y$ (equipped with the compact-open topology). Setting $x = y$, we obtain an isomorphism $\operatorname{End}_{\operatorname{Sing}_{\bullet }(X) }(x) = \operatorname{Sing}_{\bullet }( \Omega (X) )$, where $\Omega (X)$ is the based loop space of $X$. See Example 3.4.0.5.
Example 4.6.1.6. Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be $\infty $-categories, so that the join $\operatorname{\mathcal{C}}\star \operatorname{\mathcal{D}}$ is also an $\infty $-category (Corollary 4.3.3.25). Then the morphism spaces in $\operatorname{\mathcal{C}}\star \operatorname{\mathcal{D}}$ are described by the formula
\[ \operatorname{Hom}_{\operatorname{\mathcal{C}}\star \operatorname{\mathcal{D}}}(X,Y) \simeq \begin{cases} \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) & \textnormal{if } X,Y \in \operatorname{\mathcal{C}}\\ \operatorname{Hom}_{\operatorname{\mathcal{D}}}(X,Y) & \textnormal{if } X,Y \in \operatorname{\mathcal{D}}\\ \Delta ^{0} & \textnormal{if } X \in \operatorname{\mathcal{C}}, Y \in \operatorname{\mathcal{D}}\\ \emptyset & \textnormal{if } X \in \operatorname{\mathcal{D}}, Y \in \operatorname{\mathcal{C}}. \end{cases} \]
Example 4.6.1.7. Let $\operatorname{\mathcal{C}}$ be a simplicial set containing vertices $X$ and $Y$. Let $K$ be a simplicial set, and let $\underline{X}, \underline{Y}: K \rightarrow \operatorname{\mathcal{C}}$ be the constant maps taking the values $X$ and $Y$, respectively. Then there is a canonical isomorphism of simplicial sets
\[ \operatorname{Hom}_{ \operatorname{Fun}(K, \operatorname{\mathcal{C}}) }( \underline{X}, \underline{Y} ) \simeq \operatorname{Fun}(K, \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) ). \]
Proposition 4.6.1.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the morphism space $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ is a Kan complex.
Proposition 4.6.1.10 is a special case of the following more general assertion:
Proposition 4.6.1.11. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $B$ be a simplicial set, let $A \subseteq B$ be a simplicial subset which contains every vertex of $B$, and let $f: A \rightarrow \operatorname{\mathcal{C}}$ be a diagram. Then the fiber product $\operatorname{Fun}(B,\operatorname{\mathcal{C}}) \times _{ \operatorname{Fun}(A,\operatorname{\mathcal{C}}) } \{ f \} $ is a Kan complex.
Proof.
Corollary 4.4.5.3 guarantees the restriction map $\theta : \operatorname{Fun}(B,\operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}(A, \operatorname{\mathcal{C}})$ is an isofibration, so that the fiber $\operatorname{Fun}(B,\operatorname{\mathcal{C}}) \times _{ \operatorname{Fun}(A,\operatorname{\mathcal{C}}) } \{ f \} $ is an $\infty $-category. To show that it is a Kan complex, it will suffice to show that every morphism $u$ in $\operatorname{Fun}(B,\operatorname{\mathcal{C}}) \times _{ \operatorname{Fun}(A,\operatorname{\mathcal{C}}) } \{ f \} $ is an isomorphism (Proposition 4.4.2.1). By virtue of Corollary 4.4.3.20, this is equivalent to the assertion that the image of $u$ in the $\infty $-category $\operatorname{Fun}( B, \operatorname{\mathcal{C}})$ is an isomorphism. This follows from Theorem 4.4.4.4, since for every vertex $b \in B$, the evaluation functor
\[ \operatorname{ev}_ b: \operatorname{Fun}(B, \operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}( \{ b\} , \operatorname{\mathcal{C}}) \simeq \operatorname{\mathcal{C}} \]
factors through $\operatorname{Fun}(A, \operatorname{\mathcal{C}})$ and therefore carries $u$ to the identity morphism $\operatorname{id}_{ f(b)}$.
$\square$
Example 4.6.1.13 (Loop Spaces). Let $(X,x)$ be a pointed Kan complex. The Kan complex $\operatorname{Hom}_{X}(x,x)$ is often denoted by $\Omega (X)$ and referred to as the based loop space of $X$. Note that it can be identified with the fiber over $x$ of the evaluation map
\[ q: \{ x\} \times _{ \operatorname{Fun}(\{ 0\} , X) } \operatorname{Fun}( \Delta ^1, X) \rightarrow \operatorname{Fun}(\{ 1\} , X) = X. \]
By virtue of Example 3.1.7.10, this map is a Kan fibration whose domain is a contractible Kan complex. It follows that the long exact sequence of Theorem 3.2.6.1 yields isomorphisms $\pi _{n}( \operatorname{Hom}_{X}(x,x), \operatorname{id}_{x} ) \simeq \pi _{n+1}(X,x)$ for $n \geq 0$.
It will sometimes be convenient to work with a relative version of Construction 4.6.1.1.
Construction 4.6.1.15. Let $q: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a morphism of simplicial sets, let $X$ and $Y$ be vertices of $\operatorname{\mathcal{C}}$, and let $e: q(X) \rightarrow q(Y)$ be an edge of the simplicial set $\operatorname{\mathcal{D}}$. We let $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{e}$ denote the fiber product $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \times _{ \operatorname{Hom}_{\operatorname{\mathcal{D}}}( q(X), q(Y) ) } \{ e\} $, which we regard as a simplicial subset of $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$.
Example 4.6.1.16. In the situation of Construction 4.6.1.15, suppose that the simplicial $\operatorname{Hom}_{\operatorname{\mathcal{D}}}( q(X), q(Y) )$ is isomorphic to $\Delta ^0$ (this condition is satisfied, for example, if $\operatorname{\mathcal{D}}$ is the nerve of a partially ordered set). Then the inclusion map $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{e} \hookrightarrow \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ is an isomorphism.
Example 4.6.1.17. Let $q: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a morphism of simplicial sets and let $X$ and $Y$ be vertices of $\operatorname{\mathcal{C}}$ having the same image $D = q(X) = q(Y)$ in $\operatorname{\mathcal{D}}$. Then we have a canonical isomorphism of simplicial sets
\[ \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{ \operatorname{id}_{D} } \simeq \operatorname{Hom}_{ \operatorname{\mathcal{C}}_{D} }(X,Y), \]
where $\operatorname{\mathcal{C}}_{D} = \{ D\} \times _{\operatorname{\mathcal{D}}} \operatorname{\mathcal{C}}$ denotes the fiber of $q$ over the vertex $D$.
Proposition 4.6.1.20. Let $q: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an inner fibration of simplicial sets, let $X$ and $Y$ be vertices of $\operatorname{\mathcal{C}}$, and let $e: q(X) \rightarrow q(Y)$ be an edge of $\operatorname{\mathcal{D}}$. Then the simplicial set $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{e}$ is a Kan complex.
Proof.
Form a pullback diagram of simplicial sets
\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}' \ar [r] \ar [d]^{q'} & \operatorname{\mathcal{C}}\ar [d]^{q} \\ \Delta ^1 \ar [r]^-{e} & \operatorname{\mathcal{D}}. } \]
Since $q$ is an inner fibration, the morphism $q'$ is also an inner fibration (Remark 4.1.1.5), so that $\operatorname{\mathcal{C}}'$ is an $\infty $-category (Remark 4.1.1.9). Remark 4.6.1.19 then supplies an isomorphism of $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{e}$ with a simplicial set of the form $\operatorname{Hom}_{\operatorname{\mathcal{C}}'}( \widetilde{X}, \widetilde{Y} )$, which is a Kan complex by virtue of Proposition 4.6.1.10.
$\square$
In the special case where $\operatorname{\mathcal{D}}$ is an $\infty $-category, we can prove a slightly stronger assertion:
Proposition 4.6.1.21. Let $q: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an inner fibration of $\infty $-categories and let $X$ and $Y$ be objects of $\operatorname{\mathcal{C}}$. Then the induced map $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}}( q(X), q(Y) )$ is a Kan fibration of simplicial sets.
Proposition 4.6.1.21 is an immediate consequence of the following more general assertion:
Proposition 4.6.1.23. Let $q: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an inner fibration of $\infty $-categories, let $B$ be a simplicial set, let $A \subseteq B$ be a simplicial subset which contains every vertex of $B$, and let $f: A \rightarrow \operatorname{\mathcal{C}}$ be a diagram. Then the induced map
\[ \operatorname{Fun}( B, \operatorname{\mathcal{C}}) \times _{ \operatorname{Fun}(A, \operatorname{\mathcal{C}}) } \{ f\} \rightarrow \operatorname{Fun}( B, \operatorname{\mathcal{D}}) \times _{ \operatorname{Fun}(A, \operatorname{\mathcal{D}}) } \{ q \circ f \} \]
is a Kan fibration of simplicial sets.
Proof.
It follows from Proposition 4.6.1.10 that the simplicial sets $\operatorname{Fun}( B, \operatorname{\mathcal{C}}) \times _{ \operatorname{Fun}(A, \operatorname{\mathcal{C}}) } \{ f\} $ and $\operatorname{Fun}( B, \operatorname{\mathcal{D}}) \times _{ \operatorname{Fun}(A, \operatorname{\mathcal{D}}) } \{ q \circ f \} $ are Kan complexes. It will therefore suffice to show that $\theta $ is an isofibration (Corollary 4.4.3.10). This follows from the observation that $\theta $ is a pullback of the restriction map
\[ \operatorname{Fun}( B, \operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}( B, \operatorname{\mathcal{D}}) \times _{ \operatorname{Fun}(A, \operatorname{\mathcal{D}}) } \operatorname{Fun}( A, \operatorname{\mathcal{C}}), \]
which is an isofibration by virtue of Variant 4.4.5.11.
$\square$
Proof of Proposition 4.6.1.21.
Apply Proposition 4.6.1.23 in the special case $B = \Delta ^1$ and $A = \operatorname{\partial \Delta }^1$.
$\square$
Exercise 4.6.1.24. Let $q: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an isofibration of simplicial sets, and let $X$ and $Y$ vertices of $\operatorname{\mathcal{C}}$. Show that the induced map $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}}(q(X), q(Y) )$ is a Kan fibration.