Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

4.6.2 Fully Faithful and Essentially Surjective Functors

Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be categories. Recall that a functor $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ is an equivalence of categories if and only if it satisfies the following pair of conditions:

$(1)$

The functor $F$ is fully faithful: that is, for every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the induced map $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}}( F(X), F(Y) )$ is bijective.

$(2)$

The functor $F$ is essentially surjective: that is, for every object $X \in \operatorname{\mathcal{D}}$, there exists an object $Y \in \operatorname{\mathcal{C}}$ and an isomorphism $X \simeq F(Y)$ in the category $\operatorname{\mathcal{D}}$.

Our goal in this section is to give an analogous characterization of equivalences in the setting of $\infty $-categories (Theorem 4.6.2.20). We begin by formulating $\infty $-categorical analogues of conditions $(1)$ and $(2)$.

Definition 4.6.2.1. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. We say that $F$ is fully faithful if, for every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the induced map of morphism spaces $\operatorname{Hom}_{\operatorname{\mathcal{C}}}( X, Y) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}}( F(X), F(Y) )$ is a homotopy equivalence of Kan complexes.

Example 4.6.2.2. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\operatorname{\mathcal{C}}' \subseteq \operatorname{\mathcal{C}}$ be a full subcategory (Definition 4.1.2.15). Then the inclusion map $\iota : \operatorname{\mathcal{C}}' \hookrightarrow \operatorname{\mathcal{C}}$ is fully faithful. In fact, for every pair of objects $X,Y \in \operatorname{\mathcal{C}}'$, the inclusion $\iota $ induces an isomorphism of simplicial sets $\operatorname{Hom}_{\operatorname{\mathcal{C}}'}(X,Y) \simeq \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$.

Example 4.6.2.3. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor between ordinary categories. Then $F$ is fully faithful if and only if the induced map $\operatorname{N}_{\bullet }(F): \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{D}})$ is fully faithful (in the sense of Definition 4.6.2.1). Consequently, we can regard Definition 4.6.2.1 as a generalization of the classical notion of fully faithful functor.

Remark 4.6.2.4. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor between $\infty $-categories, so that $F$ induces a functor of homotopy categories $f: \mathrm{h} \mathit{\operatorname{\mathcal{C}}} \rightarrow \mathrm{h} \mathit{\operatorname{\mathcal{D}}}$. If $F$ is fully faithful, then $f$ is also fully faithful (see Remark 4.6.1.12). Beware that the converse is generally false.

Remark 4.6.2.5 (Transitivity). Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ and $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be functors of $\infty $-categories, where $G$ is fully faithful. Then $F$ is fully faithful if and only if $G \circ F$ is fully faithful. In particular, the collection of fully faithful functors is closed under composition.

Remark 4.6.2.6. Suppose we are given a commutative diagram of $\infty $-categories

4.54
\begin{equation} \begin{gathered}\label{equation:morphism-space-categorical-pullback-square} \xymatrix { \operatorname{\mathcal{C}}_{01} \ar [r] \ar [d] & \operatorname{\mathcal{C}}_0 \ar [d] \\ \operatorname{\mathcal{C}}_1 \ar [r] & \operatorname{\mathcal{C}}} \end{gathered} \end{equation}

Combining Remark 4.6.1.14 with Corollary 3.4.1.6, we see that the following conditions are equivalent:

$(1)$

The diagram (4.54) induces a fully faithful functor from $\operatorname{\mathcal{C}}_{01}$ to the homotopy fiber product $\operatorname{\mathcal{C}}_{0} \times ^{\mathrm{h}}_{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_1$.

$(2)$

For every object $X_{01} \in \operatorname{\mathcal{C}}_{01}$ having images $X_0 \in \operatorname{\mathcal{C}}_0$, $X_1 \in \operatorname{\mathcal{C}}_1$, $X \in \operatorname{\mathcal{C}}$ and every object $Y_{01} \in \operatorname{\mathcal{C}}_{01}$ having images $Y_0 \in \operatorname{\mathcal{C}}_0$, $Y_1 \in \operatorname{\mathcal{C}}_1$, $Y \in \operatorname{\mathcal{C}}$, the diagram of Kan complexes

\[ \xymatrix { \operatorname{Hom}_{\operatorname{\mathcal{C}}_{01}}( X_{01}, Y_{01} ) \ar [r] \ar [d] & \operatorname{Hom}_{ \operatorname{\mathcal{C}}_0}( X_0, Y_1 ) \ar [d] \\ \operatorname{Hom}_{ \operatorname{\mathcal{C}}_1}( X_1, Y_1 ) \ar [r] & \operatorname{Hom}_{ \operatorname{\mathcal{C}}}( X, Y) } \]

is a homotopy pullback square.

In particular, if (4.54) is a categorical pullback diagram, then it satisfies condition $(2)$.

Remark 4.6.2.7. Suppose we are given a categorical pullback diagram of $\infty $-categories

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}\ar [r]^-{F} \ar [d]^{q} & \operatorname{\mathcal{D}}\ar [d] \\ \operatorname{\mathcal{C}}' \ar [r]^-{F'} & \operatorname{\mathcal{D}}'. } \]

If $F'$ is fully faithful, then $F$ is fully faithful (see Remark 4.6.2.6 and Corollary 3.4.1.5).

Proposition 4.6.2.8. Suppose we are given a commutative diagram of $\infty $-categories

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}\ar [r]^-{F} \ar [d]^{q} & \operatorname{\mathcal{C}}' \ar [d]^{q'} \\ \operatorname{\mathcal{D}}\ar [r]^-{\overline{F}} & \operatorname{\mathcal{D}}'. } \]

Assume that the functors $q$ and $q'$ are inner fibrations and that the functors $F$ and $\overline{F}$ are fully faithful. Then, for every object $D \in \operatorname{\mathcal{D}}$, the induced functor $F_{D}: \operatorname{\mathcal{C}}_{D} \rightarrow \operatorname{\mathcal{C}}'_{ \overline{F}(D) }$ is fully faithful.

Proof. Let $X$ and $Y$ be objects of the $\infty $-category $\operatorname{\mathcal{C}}_{D}$. We then have a cubical diagram of Kan complexes

\[ \xymatrix@R =50pt@C=10pt{ \operatorname{Hom}_{\operatorname{\mathcal{C}}_ D}(X,Y) \ar [rr] \ar [dd] \ar [dr] & & \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \ar [dr] \ar [dd] & \\ & \operatorname{Hom}_{\operatorname{\mathcal{C}}'_{\overline{F}}(D)}( F(X), F(Y) ) \ar [rr] \ar [dd] & & \operatorname{Hom}_{ \operatorname{\mathcal{C}}' }( F(X), F(Y) ) \ar [dd] \\ \{ \operatorname{id}_{D} \} \ar [rr] \ar [dr] & & \operatorname{Hom}_{\operatorname{\mathcal{D}}}(D,D) \ar [dr] & \\ & \{ \operatorname{id}_{ \overline{F}(D) } \} \ar [rr] & & \operatorname{Hom}_{\operatorname{\mathcal{D}}'}( \overline{F}(D), \overline{F}(D) ). } \]

The front and back faces of this diagram are homotopy pullback squares (Remark 4.6.1.22), the comparison maps

\[ \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}}(F(X), F(Y) ) \quad \quad \operatorname{Hom}_{\operatorname{\mathcal{D}}}(D,D) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}}( \overline{F}(D), \overline{F}(D) ) \]

are homotopy equivalences by virtue of our assumptions that $F$ and $\overline{F}$ are fully faithful, and the map of singletons $\{ \operatorname{id}_{D} \} \rightarrow \{ \operatorname{id}_{ \overline{F}(D) } \} $ is an isomorphism. Applying Corollary 3.4.1.12, we conclude that the comparison map $ \operatorname{Hom}_{\operatorname{\mathcal{C}}_ D}(X,Y) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{C}}'_{\overline{F}(D)} }( F(X), F(Y) )$ is also a homotopy equivalence. $\square$

Proposition 4.6.2.9. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a fully faithful functor of $\infty $-categories. Then $F$ is conservative (Definition 4.4.2.7). That is, if $u: X \rightarrow Y$ is a morphism in $\operatorname{\mathcal{C}}$ for which $F(u)$ is an isomorphism in the $\infty $-category $\operatorname{\mathcal{D}}$, then $u$ is an isomorphism in the $\infty $-category $\operatorname{\mathcal{C}}$.

Proof. Let $\overline{v}: F(Y) \rightarrow F(X)$ be a homotopy inverse to $F(u)$. Since $F$ is fully faithful, the natural map $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y, X) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}}( F(Y), F(X))$ is a homotopy equivalence. We may therefore assume without loss of generality that $\overline{v} = F(v)$, for some morphism $v: Y \rightarrow X$ in the $\infty $-category $\operatorname{\mathcal{C}}$. Let $v \circ u$ be a composition of $u$ and $v$ in the $\infty $-category $\operatorname{\mathcal{C}}$. Since $F(u)$ is homotopy inverse to $F(v)$, the morphism $F( v \circ u)$ is homotopic to $\operatorname{id}_{ F(C) } = F( \operatorname{id}_{C} )$. Since the map $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X, X) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}}( F(X), F(X))$ is a homotopy equivalence, it follows that $v \circ u$ is homotopic to $\operatorname{id}_{C}$: that is, $v$ is a left homotopy inverse to $u$. A similar argument (with the roles of $u$ and $v$ reversed) shows that $v$ is also a right homotopy inverse to $u$. It follows that $u$ is an isomorphism. $\square$

Corollary 4.6.2.10. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a fully faithful functor of $\infty $-categories. Then the induced map of cores $\operatorname{\mathcal{C}}^{\simeq } \rightarrow \operatorname{\mathcal{D}}^{\simeq }$ is also fully faithful.

Proof. Fix objects $X,Y \in \operatorname{\mathcal{C}}^{\simeq }$. Our assumption that $F$ is fully faithful guarantees that the induced map $\theta : \operatorname{Hom}_{\operatorname{\mathcal{C}}}( X, Y) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}}( F(X), F(Y) )$ is a homotopy equivalence of Kan complexes. By virtue of Proposition 4.6.2.9, $\theta $ restricts to a homotopy equivalence from the summand of $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ spanned by the isomorphisms from $X$ to $Y$ to the summand of $\operatorname{Hom}_{\operatorname{\mathcal{D}}}( F(X), F(Y) )$ spanned by the isomorphisms from $F(X)$ to $F(Y)$. Unwinding the definitions, we conclude that $F^{\simeq }$ induces a homotopy equivalence $\operatorname{Hom}_{\operatorname{\mathcal{C}}^{\simeq }}( X, Y) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}^{\simeq }}( F(X), F(Y) )$. $\square$

Definition 4.6.2.11. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. The essential image of $F$ is the full subcategory of $\operatorname{\mathcal{D}}$ spanned by those objects $D \in \operatorname{\mathcal{D}}$ for which there exists an object $C \in \operatorname{\mathcal{C}}$ and an isomorphism $F(C) \simeq D$. We say that $F$ is essentially surjective if its essential image is the entire $\infty $-category $\operatorname{\mathcal{D}}$: that is, if the map of sets $\pi _0( \operatorname{\mathcal{C}}^{\simeq } ) \rightarrow \pi _0( \operatorname{\mathcal{D}}^{\simeq } )$ is surjective.

Remark 4.6.2.12. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories, and let $\operatorname{\mathcal{D}}' \subseteq \operatorname{\mathcal{D}}$ be the essential image of $F$. Then $\operatorname{\mathcal{D}}'$ is a replete full subcategory of $\operatorname{\mathcal{D}}$, and $F$ can be regarded as an essentially surjective functor from $\operatorname{\mathcal{C}}$ to $\operatorname{\mathcal{D}}'$. Moreover, the essential image $\operatorname{\mathcal{D}}'$ is uniquely determined by these properties.

Remark 4.6.2.13. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor between $\infty $-categories. Then $F$ is essentially surjective if and only if the induced functor of homotopy categories $f: \mathrm{h} \mathit{\operatorname{\mathcal{C}}} \rightarrow \mathrm{h} \mathit{\operatorname{\mathcal{D}}}$ is essentially surjective (in the sense of classical category theory).

Remark 4.6.2.14. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor between $\infty $-categories. Then $F$ is essentially surjective if and only if the induced map of Kan complexes $F^{\simeq }: \operatorname{\mathcal{C}}^{\simeq } \rightarrow \operatorname{\mathcal{D}}^{\simeq }$ is essentially surjective.

Example 4.6.2.15. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor between ordinary categories. Then $F$ is essentially surjective if and only if the induced map $\operatorname{N}_{\bullet }(F): \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{D}})$ is an essentially surjective functor of $\infty $-categories (in the sense of Definition 4.6.2.11).

Example 4.6.2.16. Let $f: X \rightarrow Y$ be a morphism of Kan complexes. Then $f$ is essentially surjective (in the sense of Definition 4.6.2.11) if and only if the induced map $\pi _0(f): \pi _0(X) \rightarrow \pi _0(Y)$ is a surjection.

Remark 4.6.2.17 (Transitivity). Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ and $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be functors of $\infty $-categories. If $F$ and $G$ are essentially surjective, then the composition $G \circ F$ is essentially surjective. Conversely, if $G \circ F$ is essentially surjective, then $G$ is essentially surjective.

Remark 4.6.2.18. Suppose we are given a categorical pullback diagram of $\infty $-categories

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}' \ar [d]^{F'} \ar [d] & \operatorname{\mathcal{C}}\ar [d]^{F} \\ \operatorname{\mathcal{D}}' \ar [r] & \operatorname{\mathcal{D}}. } \]

If $F$ is essentially surjective, then $F'$ is essentially surjective. This follows from Proposition 4.5.2.14 and Corollary 3.5.1.24.

Remark 4.6.2.19. Suppose we are given a commutative diagram of $\infty $-categories

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}\ar [r]^-{F} \ar [d]^{q} & \operatorname{\mathcal{C}}' \ar [d]^{q'} \\ \operatorname{\mathcal{D}}\ar [r]^-{\overline{F}} & \operatorname{\mathcal{D}}' } \]

satisfying the following conditions:

$(a)$

The functor $q$ is an inner fibration and $q'$ is an isofibration.

$(b)$

The functor $\overline{F}$ is essentially surjective.

$(c)$

For each object $D \in \operatorname{\mathcal{D}}$, the induced functor $F_{D}: \operatorname{\mathcal{C}}_{D} \rightarrow \operatorname{\mathcal{C}}'_{ \overline{F}(D) }$ is essentially surjective.

Then the functor $F$ is essentially surjective. To prove this, consider an arbitrary object $Z \in \operatorname{\mathcal{C}}'$. Assumption $(b)$ guarantees that there exists an object $D \in \operatorname{\mathcal{D}}$ and an isomorphism $\overline{u}: \overline{F}(D) \rightarrow q'(Z)$ in the $\infty $-category $\operatorname{\mathcal{D}}'$. Assumption $(a)$ guarantees that we can lift $\overline{u}$ to an isomorphism $u: Y \rightarrow Z$ in the $\infty $-category $\operatorname{\mathcal{C}}'$, where $Y$ belongs to the fiber $\operatorname{\mathcal{C}}'_{ \overline{F}(D)}$. Applying $(c)$, we can choose an object $X \in \operatorname{\mathcal{C}}_{D}$ and an isomorphism $v: F(X) \rightarrow Y$ in the $\infty $-category $\operatorname{\mathcal{C}}'_{ \overline{F}(D) }$. It follows that $Z$ is isomorphic to $F(X)$ in the $\infty $-category $\operatorname{\mathcal{C}}'$.

Theorem 4.6.2.20. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be functor of $\infty $-categories. Then $F$ is an equivalence of $\infty $-categories if and only if it is fully faithful and essentially surjective.

We begin by considering the special case of Theorem 4.6.2.20 where $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ are Kan complexes.

Lemma 4.6.2.21. Let $f: X \rightarrow Y$ be a morphism of Kan complexes which is fully faithful and essentially surjective. Then $f$ is a homotopy equivalence.

Proof. Since $f$ is essentially surjective, the underlying map of connected components $\pi _0(f): \pi _0(X) \rightarrow \pi _0(Y)$ is surjective. We claim that it is also injective. To prove this, suppose that $x$ and $x'$ are vertices of $X$ such that $f(x)$ and $f(x')$ belong to the same connected component of $Y$. Then the morphism space $\operatorname{Hom}_{Y}( f(x), f(x') )$ is nonempty. Since $f$ is fully faithful, it induces a homotopy equivalence $\operatorname{Hom}_{X}(x,x') \rightarrow \operatorname{Hom}_{Y}(f(x), f(x') )$. It follows that $\operatorname{Hom}_{X}(x,x')$ is nonempty, so that $x$ and $x'$ belong to the same connected component of $X$. This completes the proof that $\pi _0(f)$ is a bijection.

By virtue of Whitehead's theorem (Theorem 3.2.7.1), it will suffice to show that for every vertex $x \in X$ having image $y =f(x) \in Y$ and every integer $n \geq 0$, the induced map $\theta : \pi _{n+1}( X, x) \rightarrow \pi _{n+1}( Y, y)$ is an isomorphism. Using Example 4.6.1.13, we can identify $\theta $ with the natural map $\pi _{n}( \operatorname{Hom}_{X}(x,x), \operatorname{id}_{x} ) \rightarrow \pi _{n}( \operatorname{Hom}_{Y}(y,y), \operatorname{id}_{y} )$, which is bijective by virtue of our assumption that $f$ induces a homotopy equivalence $\operatorname{Hom}_{X}(x,x) \rightarrow \operatorname{Hom}_{Y}(y,y)$. $\square$

Proof of Theorem 4.6.2.20. Assume first that $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ is an equivalence of $\infty $-categories. Then $F$ induces a homotopy equivalence of Kan complexes $F^{\simeq }: \operatorname{\mathcal{C}}^{\simeq } \rightarrow \operatorname{\mathcal{D}}^{\simeq }$ (Remark 4.5.1.19). Passing to connected components, we conclude that the induced map $\pi _0( \operatorname{\mathcal{C}}^{\simeq } ) \rightarrow \pi _0( \operatorname{\mathcal{D}}^{\simeq } )$ is bijective. In particular, $F$ is essentially surjective. We have a commutative diagram of Kan complexes

4.55
\begin{equation} \begin{gathered}\label{equation:restriction-to-endpoint-diagram} \xymatrix@R =50pt@C=50pt{ \operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{C}})^{\simeq } \ar [r]^-{\theta } \ar [d] & \operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{D}})^{\simeq } \ar [d] \\ \operatorname{Fun}( \operatorname{\partial \Delta }^1, \operatorname{\mathcal{C}})^{\simeq } \ar [r]^-{\theta _0} & \operatorname{Fun}( \operatorname{\partial \Delta }^1, \operatorname{\mathcal{D}})^{\simeq },} \end{gathered} \end{equation}

where the horizontal maps are homotopy equivalences (Theorem 4.5.7.1) and the vertical maps are Kan fibrations (Corollary 4.4.5.4). Applying Proposition 3.2.8.1, we conclude that for every vertex $(X,Y) \in \operatorname{Fun}( \operatorname{\partial \Delta }^1, \operatorname{\mathcal{C}})^{\simeq }$, the induced map of fibers

\begin{eqnarray*} \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) & = & \{ (X,Y) \} \times _{ \operatorname{Fun}( \operatorname{\partial \Delta }^1, \operatorname{\mathcal{C}})^{\simeq } } \operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{C}})^{\simeq } \\ & \rightarrow & \{ (X,Y) \} \times _{ \operatorname{Fun}( \operatorname{\partial \Delta }^1, \operatorname{\mathcal{D}})^{\simeq } } \operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{D}})^{\simeq } \\ & = & \operatorname{Hom}_{\operatorname{\mathcal{D}}}( F(X), F(Y) ) \end{eqnarray*}

is a homotopy equivalence. It follows that $F$ is fully faithful.

Now suppose that $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ is a functor of $\infty $-categories which is fully faithful and essentially surjective. Using Corollary 4.6.2.10 and Remark 4.6.2.14, we see that the induced map $F^{\simeq }: \operatorname{\mathcal{C}}^{\simeq } \rightarrow \operatorname{\mathcal{D}}^{\simeq }$ is also fully faithful and essentially surjective, and is therefore a homotopy equivalence of Kan complexes (Lemma 4.6.2.21). It follows that the morphism $\theta _0$ in (4.55) is a homotopy equivalence of Kan complexes. Combining our assumption that $F$ is fully faithful with Proposition 3.2.8.1, we conclude that $\theta $ is also a homotopy equivalence. Applying Theorem 4.5.7.1, we conclude that $F$ is an equivalence of $\infty $-categories. $\square$

Corollary 4.6.2.22. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories, and let $\operatorname{\mathcal{D}}' \subseteq \operatorname{\mathcal{D}}$ be the essential image of $F$. Then $F$ is fully faithful if and only if it induces an equivalence of $\infty $-categories $\operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}'$.

Corollary 4.6.2.23. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a fully faithful functor of $\infty $-categories. Then, for every simplicial set $K$, the induced map $\operatorname{Fun}(K, \operatorname{\mathcal{C}}) \xrightarrow {F \circ } \operatorname{Fun}(K, \operatorname{\mathcal{D}})$ is also fully faithful.

Proof. Using Corollary 4.6.2.22, we can replace $\operatorname{\mathcal{C}}$ by its essential image and thereby reduce to the case where $F: \operatorname{\mathcal{C}}\hookrightarrow \operatorname{\mathcal{D}}$ is the inclusion of a full subcategory. In this case, the induced map $\operatorname{Fun}(K, \operatorname{\mathcal{C}}) \xrightarrow {F \circ } \operatorname{Fun}(K,\operatorname{\mathcal{D}})$ is also the inclusion of a full subcategory, and therefore automatically fully faithful (Example 4.6.2.2). $\square$

Corollary 4.6.2.24. Let $f: X \rightarrow Y$ be a morphism of Kan complexes. Then $f$ is fully faithful (when regarded as a functor of $\infty $-categories) if and only if it induces a homotopy equivalence from $X$ to a summand of $Y$.