# Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$

Proposition 4.6.1.23. Let $q: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an inner fibration of $\infty$-categories, let $B$ be a simplicial set, let $A \subseteq B$ be a simplicial subset which contains every vertex of $B$, and let $f: A \rightarrow \operatorname{\mathcal{C}}$ be a diagram. Then the induced map

$\operatorname{Fun}( B, \operatorname{\mathcal{C}}) \times _{ \operatorname{Fun}(A, \operatorname{\mathcal{C}}) } \{ f\} \rightarrow \operatorname{Fun}( B, \operatorname{\mathcal{D}}) \times _{ \operatorname{Fun}(A, \operatorname{\mathcal{D}}) } \{ q \circ f \}$

is a Kan fibration of simplicial sets.

Proof. It follows from Proposition 4.6.1.10 that the simplicial sets $\operatorname{Fun}( B, \operatorname{\mathcal{C}}) \times _{ \operatorname{Fun}(A, \operatorname{\mathcal{C}}) } \{ f\}$ and $\operatorname{Fun}( B, \operatorname{\mathcal{D}}) \times _{ \operatorname{Fun}(A, \operatorname{\mathcal{D}}) } \{ q \circ f \}$ are Kan complexes. It will therefore suffice to show that $\theta$ is an isofibration (Corollary 4.4.3.10). This follows from the observation that $\theta$ is a pullback of the restriction map

$\operatorname{Fun}( B, \operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}( B, \operatorname{\mathcal{D}}) \times _{ \operatorname{Fun}(A, \operatorname{\mathcal{D}}) } \operatorname{Fun}( A, \operatorname{\mathcal{C}}),$

which is an isofibration by virtue of Variant 4.4.5.11. $\square$