Example 6.3.1.4. Let $\operatorname{\mathcal{C}}$ be a simplicial set and let $W$ be a collection of edges of $\operatorname{\mathcal{C}}$. If $\operatorname{\mathcal{E}}$ is a Kan complex, then $\operatorname{Fun}(\operatorname{\mathcal{C}}[W^{-1}], \operatorname{\mathcal{E}}) = \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ (see Proposition 1.4.6.10).
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$