$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$
2 Higher Category Theory
Structure
-
Chapter 6: Adjoint Functors
- Section 6.1: Adjunctions in $2$-Categories
-
Section 6.2: Adjoint Functors Between $\infty $-Categories
- Subsection 6.2.1: Adjunctions of $\infty $-Categories
- Subsection 6.2.2: Reflective Subcategories
- Subsection 6.2.3: Local Objects
- Subsection 6.2.4: Stability Properties of Reflective Subcategories
- Subsection 6.2.5: Correspondences
- Subsection 6.2.6: Local Existence Criterion
- Subsection 6.2.7: Digression: $\infty $-Categories with Short Morphisms
- Section 6.3: Localization
-
Chapter 7: Limits and Colimits
-
Section 7.1: Limits and Colimits
- Subsection 7.1.1: Limits and Colimits in $\infty $-Categories
- Subsection 7.1.2: Constant Diagrams
- Subsection 7.1.3: Limit and Colimit Diagrams
- Subsection 7.1.4: Preservation of Limits and Colimits
- Subsection 7.1.5: Relative Initial and Final Objects
- Subsection 7.1.6: Relative Limits and Colimits
- Subsection 7.1.7: Limits and Colimits of Functors
- Section 7.2: Cofinality
-
Section 7.3: Kan Extensions
- Subsection 7.3.1: Kan Extensions along General Functors
- Subsection 7.3.2: Kan Extensions along Inclusions
- Subsection 7.3.3: Relative Kan Extensions
- Subsection 7.3.4: Kan Extensions along Fibrations
- Subsection 7.3.5: Existence of Kan Extensions
- Subsection 7.3.6: The Universal Property of Kan Extensions
- Subsection 7.3.7: Kan Extensions in Functor $\infty $-Categories
- Subsection 7.3.8: Transitivity of Kan Extensions
- Subsection 7.3.9: Relative Colimits for Cocartesian Fibrations
- Section 7.4: Limits and Colimits of Spaces
-
Section 7.5: Homotopy Limits and Colimits
- Subsection 7.5.1: Homotopy Limits of Kan Complexes
- Subsection 7.5.2: Homotopy Limits of $\infty $-Categories
- Subsection 7.5.3: The Homotopy Limit as a Derived Functor
- Subsection 7.5.4: Homotopy Limit Diagrams
- Subsection 7.5.5: Categorical Limit Diagrams
- Subsection 7.5.6: The Homotopy Colimit as a Derived Functor
- Subsection 7.5.7: Homotopy Colimit Diagrams
- Subsection 7.5.8: Categorical Colimit Diagrams
- Section 7.6: Examples of Limits and Colimits
- Section 7.7: Universality of Colimits
-
Section 7.1: Limits and Colimits
-
Chapter 8: The Yoneda Embedding
-
Section 8.1: Twisted Arrows and Cospans
- Subsection 8.1.1: The Twisted Arrow Construction
- Subsection 8.1.2: Homotopy Transport for Twisted Arrows
- Subsection 8.1.3: The Cospan Construction
- Subsection 8.1.4: Cospans in $\infty $-Categories
- Subsection 8.1.5: Thin $2$-Simplices of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$
- Subsection 8.1.6: Restricted Cospans
- Subsection 8.1.7: Comparing $\operatorname{\mathcal{C}}$ with $\operatorname{Cospan}(\operatorname{\mathcal{C}})$
- Subsection 8.1.8: Morphisms in the Duskin Nerve
- Subsection 8.1.9: Cospan Fibrations
- Subsection 8.1.10: Beck-Chevalley Fibrations
- Section 8.2: Couplings of $\infty $-Categories
- Section 8.3: The Yoneda Embedding
-
Section 8.4: Cocompletion
- Subsection 8.4.1: Dense Functors
- Subsection 8.4.2: Density of Yoneda Embeddings
- Subsection 8.4.3: Cocompletion via the Yoneda Embedding
- Subsection 8.4.4: Cocontinuous Extensions
- Subsection 8.4.5: Adjoining Colimits to $\infty $-Categories
- Subsection 8.4.6: Recognition of Cocompletions
- Subsection 8.4.7: Slices of Cocompletions
-
Section 8.5: Retracts and Idempotents
- Subsection 8.5.1: Retracts in $\infty $-Categories
- Subsection 8.5.2: Idempotents in Ordinary Categories
- Subsection 8.5.3: Idempotents in $\infty $-Categories
- Subsection 8.5.4: Idempotent Completeness
- Subsection 8.5.5: Idempotent Completion
- Subsection 8.5.6: Morita Equivalence
- Subsection 8.5.7: Idempotent Endomorphisms
- Subsection 8.5.8: Homotopy Idempotent Endomorphisms
- Subsection 8.5.9: Partial Idempotents
- Subsection 8.5.10: The Thompson Groupoid
-
Section 8.6: Conjugate and Dual Fibrations
- Subsection 8.6.1: Conjugate Fibrations
- Subsection 8.6.2: Existence of Conjugate Fibrations
- Subsection 8.6.3: Uniqueness of Conjugate Fibrations
- Subsection 8.6.4: Dual Fibrations
- Subsection 8.6.5: Existence of Dual Fibrations
- Subsection 8.6.6: Comparison of Dual and Conjugate Fibrations
- Subsection 8.6.7: The Opposition Functor
- Subsection 8.6.8: Contravariant Transport Representations
-
Section 8.7: Fiberwise Cocompletions
- Subsection 8.7.1: Uniqueness of Fiberwise Cocompletions
- Subsection 8.7.2: Fiberwise Cocompletions of Cocartesian Fibrations
- Subsection 8.7.3: Functoriality of Cocompletion
- Subsection 8.7.4: Fiberwise Cocompletion of Cartesian Fibrations
- Subsection 8.7.5: Existence of Fiberwise Cocompletions
- Subsection 8.7.6: Application: Flat Inner Fibrations
- Subsection 8.7.7: Flatness and Morphism Spaces
- Subsection 8.7.8: Fiberwise Cocompletion via the Yoneda Embedding
-
Section 8.1: Twisted Arrows and Cospans
-
Chapter 9: Large $\infty $-Categories
-
Section 9.1: Filtered $\infty $-Categories
- Subsection 9.1.1: Filtered $\infty $-Categories
- Subsection 9.1.2: Local Characterization of Filtered $\infty $-Categories
- Subsection 9.1.3: Fibrations over Filtered $\infty $-Categories
- Subsection 9.1.4: Digression: Commutation of Limits and Colimits
- Subsection 9.1.5: Filtered Colimits of Spaces
- Subsection 9.1.6: Filtered Colimits of Simplicial Sets
- Subsection 9.1.7: Approximation by Simplicial Subsets
- Subsection 9.1.8: Approximation by Partially Ordered Sets
- Subsection 9.1.9: Finitary Functors
- Subsection 9.1.10: Filtered Colimits of $\infty $-Categories
-
Section 9.2: Compact Objects and Ind-Completion
- Subsection 9.2.1: Ind-Completion
- Subsection 9.2.2: Compact Objects
- Subsection 9.2.3: Recognition of Ind-Completions
- Subsection 9.2.4: Flat Functors
- Subsection 9.2.5: Exact Functors
- Subsection 9.2.6: Compactly Generated $\infty $-Categories
- Subsection 9.2.7: Finiteness Conditions on Spaces
- Subsection 9.2.8: Finiteness Conditions on $\infty $-Categories
- Subsection 9.2.9: Transitivity of $\operatorname{Ind}$-Completion
-
Section 9.3: Local Objects and Factorization Systems
- Subsection 9.3.1: Digression: Transfinite Composition
- Subsection 9.3.2: Weakly Local Objects
- Subsection 9.3.3: The Small Object Argument
- Subsection 9.3.4: Lifting Problems in $\infty $-Categories
- Subsection 9.3.5: Weak Factorization Systems
- Subsection 9.3.6: Orthogonality
- Subsection 9.3.7: Uniqueness of Factorizations
- Subsection 9.3.8: Factorization Systems
- Section 9.4: Truncated Objects of $\infty $-Categories
-
Section 9.1: Filtered $\infty $-Categories
- Chapter 10: Exactness and Animation