9.1.2 Local Characterization of Filtered $\infty $-Categories
Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ denote the homotopy category of $\operatorname{\mathcal{C}}$, which we view as enriched over the homotopy category $\mathrm{h} \mathit{\operatorname{Kan}}$ of Kan complexes (see Construction 4.6.9.13). In this section, we show that the condition that $\operatorname{\mathcal{C}}$ is filtered can be formulated entirely in terms of $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$, together with its $\mathrm{h} \mathit{\operatorname{Kan}}$-enrichment (Theorem 9.1.2.5).
Definition 9.1.2.1. Let $\mathrm{h} \mathit{\operatorname{Kan}}$ denote the homotopy category of Kan complexes (Construction 7.2.1.22), and let $\operatorname{\mathcal{C}}$ be a category which is enriched over $\mathrm{h} \mathit{\operatorname{Kan}}$. We will say that $\operatorname{\mathcal{C}}$ is homotopy filtered if it is nonempty and satisfies the following condition for each $n \geq 1$:
- $(\ast _ n)$
For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$ and for every morphism of simplicial sets $\sigma : \operatorname{\partial \Delta }^{n-1} \rightarrow \underline{\operatorname{Hom}}_{\operatorname{\mathcal{C}}}(X,Y)$, there exists a morphism $v: Y \rightarrow Z$ for which the composite morphism
\[ \operatorname{\partial \Delta }^{n-1} \xrightarrow { \sigma } \underline{\operatorname{Hom}}_{\operatorname{\mathcal{C}}}( X, Y) \xrightarrow { v \circ } \underline{\operatorname{Hom}}_{\operatorname{\mathcal{C}}}(X,Z) \]
is nullhomotopic.
Warning 9.1.2.2. In the formulation of condition $(\ast _ n)$ of Definition 9.1.2.1, postcomposition with $v$ defines a map of Kan complexes $V: \underline{\operatorname{Hom}}_{\operatorname{\mathcal{C}}}( X, Y) \rightarrow \underline{\operatorname{Hom}}_{\operatorname{\mathcal{C}}}(X,Z)$ which is only well-defined up to homotopy. However, the condition that $V \circ \sigma $ is nullhomotopic depends only on the homotopy class of $V$.
Example 9.1.2.3. Let $\operatorname{\mathcal{C}}$ be an ordinary category, which we regard as an $\mathrm{h} \mathit{\operatorname{Kan}}$-enriched category in which each of the Kan complexes $\underline{\operatorname{Hom}}_{\operatorname{\mathcal{C}}}(X,Y)$ is a constant simplicial set. In this case, condition $(\ast _ n)$ of Definition 9.1.2.1 is automatically satisfied for $n \geq 3$. Moreover, we can state conditions $(\ast _1)$ and $(\ast _2)$ more concretely as follows:
- $(\ast _1)$
For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, there exists an object $Z \in \operatorname{\mathcal{C}}$ equipped with morphisms $u: X \rightarrow Z$ and $v: Y \rightarrow Z$.
- $(\ast _2)$
For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$ and every pair of morphisms $f_0, f_1: X \rightarrow Y$, there exists a morphism $v: Y \rightarrow Z$ satisfying $v \circ f_0 = v \circ f_1$.
It follows that $\operatorname{\mathcal{C}}$ is homotopy filtered (in the sense of Definition 9.1.2.1) if and only if is filtered (in the sense of Definition 9.1.0.1).
We can now state the main result of this section:
Theorem 9.1.2.5. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. Then $\operatorname{\mathcal{C}}$ is filtered (in the sense of Definition 9.1.1.1) if and only if the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ is homotopy filtered (in the sense of Definition 9.1.2.1), when regarded as an $\mathrm{h} \mathit{\operatorname{Kan}}$-enriched category (see Construction 4.6.9.13).
Before giving the proof of Theorem 9.1.2.5, let us note some of its consequences.
Corollary 9.1.2.6. Let $\operatorname{\mathcal{C}}$ be a filtered $\infty $-category (in the sense of Definition 9.1.1.1). Then $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ is a filtered category (in the sense of Definition 9.1.0.1).
Proof.
Combine Theorem 9.1.2.5 with Remark 9.1.2.4.
$\square$
Warning 9.1.2.7. The converse of Corollary 9.1.2.6 is false. For example, if $\operatorname{\mathcal{C}}$ is a simply connected Kan complex, then the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ is automatically filtered. However, $\operatorname{\mathcal{C}}$ is filtered if and only if it is contractible (Corollary 9.1.1.16).
Corollary 9.1.2.8. Let $\operatorname{\mathcal{C}}$ be a category. Then the category $\operatorname{\mathcal{C}}$ is filtered (in the sense of Definition 9.1.0.1) if and only if the $\infty $-category $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ is filtered (in the sense of Definition 9.1.1.1).
Proof.
Combine Theorem 9.1.2.5 with Example 9.1.2.3.
$\square$
Corollary 9.1.2.9. Let $\operatorname{\mathcal{C}}$ be a locally Kan simplicial category. Then the $\infty $-category $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}})$ is filtered if and only if the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ is homotopy filtered, when regarded as an $\mathrm{h} \mathit{\operatorname{Kan}}$-enriched category.
Proof.
Combine Theorem 9.1.2.5 with Corollary 4.6.9.20.
$\square$
Exercise 9.1.2.10. Let $\operatorname{\mathcal{C}}$ be a $(2,1)$-category (Definition 2.2.8.5). Show that the Duskin nerve $\operatorname{N}_{\bullet }^{\operatorname{D}}(\operatorname{\mathcal{C}})$ is a filtered $\infty $-category if and only if $\operatorname{\mathcal{C}}$ satisfies the following conditions:
- $(\ast _0)$
The $2$-category $\operatorname{\mathcal{C}}$ is nonempty.
- $(\ast _1)$
For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, there exists an object $Z \in \operatorname{\mathcal{C}}$ and a pair of $1$-morphisms $f: X \rightarrow Z$ and $g: Y \rightarrow Z$.
- $(\ast _2)$
For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$ and every pair of $1$-morphisms $f,g: X \rightarrow Y$, there exists a $1$-morphism $h: Y \rightarrow Z$ such that the $1$-morphisms $h \circ f$ and $h \circ g$ are isomorphic (when viewed as objects of the category $\underline{\operatorname{Hom}}_{\operatorname{\mathcal{C}}}(X,Z)$).
- $(\ast _3)$
For every $1$-morphism $f: X \rightarrow Y$ in $\operatorname{\mathcal{C}}$ and every $2$-morphism $\gamma : f \Rightarrow f$, there exists a $1$-morphism $g: Y \rightarrow Z$ for which the horizontal composition $\operatorname{id}_{g} \circ \gamma $ is equal to the identity $2$-morphism $\operatorname{id}_{g \circ f}$.
We now turn to the proof of Theorem 9.1.2.5. The easy part is to show that if $\operatorname{\mathcal{C}}$ is a filtered $\infty $-category, then the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ is homotopy filtered. Condition $(\ast _ n)$ of Definition 9.1.2.1 is a special case of the following assertion:
Lemma 9.1.2.11. Let $\kappa $ be an infinite cardinal, let $\operatorname{\mathcal{C}}$ be a $\kappa $-filtered $\infty $-category containing objects $X$ and $Y$, and let $K$ be a $\kappa $-small simplicial set equipped with a morphism $f: K \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$. Then there exists a morphism $v: Y \rightarrow Z$ of $\operatorname{\mathcal{C}}$ for which the composition $K \xrightarrow {f} \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \xrightarrow { v \circ } \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z)$ is nullhomotopic.
Proof.
Let $\Sigma (K)$ denote the iterated coproduct
\[ \{ x\} {\coprod }_{ ( \{ 0\} \times K ) } (\Delta ^1 \times K ) {\coprod }_{ ( \{ 1\} \times K ) } \{ y\} , \]
so that we can identify $f$ with a morphism of simplicial sets $F: \Sigma (K) \rightarrow \operatorname{\mathcal{C}}$ satisfying $F(x) = X$ and $F(y) = Y$. Note that $\Sigma (K)$ is $\kappa $-small, so our assumption that $\operatorname{\mathcal{C}}$ is $\kappa $-filtered guarantees that we can extend $F$ to a morphism of simplicial set $\overline{F}: \Sigma (K) \star \{ z\} \rightarrow \operatorname{\mathcal{C}}$. Set $Z = \overline{F}(z)$. Then $\overline{F}$ carries $\{ x\} \star \{ z\} $ and $\{ y\} \star \{ z\} $ to morphisms $u: X \rightarrow Z$ and $v: Y \rightarrow Z$ in $\operatorname{\mathcal{C}}$. Moreover, the natural map $\Delta ^1 \times K \rightarrow \Sigma (K)$ admits a unique extension $q: \Delta ^2 \times K \rightarrow \Sigma (K) \star \{ z\} $ carrying $\{ 2\} \times K$ to the vertex $z$, and the composition
\[ \Delta ^2 \times K \xrightarrow {q} \Sigma (K) \star \{ z\} \xrightarrow { \overline{F} } \operatorname{\mathcal{C}} \]
determines a morphism from $K$ to the simplicial set $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y,Z)$ of Construction 4.6.9.9. Unwinding the definitions, we see that the diagram of simplicial sets
\[ \xymatrix@R =50pt@C=50pt{ K \ar [dr]^{g} \ar [r]^-{(v,f)} \ar [dd] & \operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y,Z) \times \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \\ & \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y,Z) \ar [u] \ar [d] \\ \Delta ^{0} \ar [r]^-{u} & \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z ) } \]
is strictly commutative, from which we immediately deduce (from the definition of the composition law on $\operatorname{\mathcal{C}}$) that the composition $K \xrightarrow {f} \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \xrightarrow {v \circ } \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z)$ is homotopic to the constant map taking the value $u$.
$\square$
The difficult half of Theorem 9.1.2.5 will require some further preliminaries. We first note that, to verify that an $\infty $-category $\operatorname{\mathcal{C}}$ is filtered, it suffices to verify the extension condition of Definition 9.1.1.1 in the special case where $K = \operatorname{\partial \Delta }^ n$ is the boundary of a simplex.
Lemma 9.1.2.12. An $\infty $-category $\operatorname{\mathcal{C}}$ is filtered if and only if it satisfies the following condition for every integer $n \geq 0$:
- $(\ast '_ n)$
Every morphism of simplicial sets $\operatorname{\partial \Delta }^ n \rightarrow \operatorname{\mathcal{C}}$ can be extended to a morphism $( \operatorname{\partial \Delta }^ n )^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$.
Proof.
The necessity of condition $(\ast '_ n)$ is clear. For the converse, suppose that $\operatorname{\mathcal{C}}$ satisfies $(\ast '_ n)$ for each $n \geq 0$. We wish to prove that $\operatorname{\mathcal{C}}$ is filtered. Let $f: K \rightarrow \operatorname{\mathcal{C}}$ be a diagram where $K$ is a finite simplicial set; we wish to show that the $\infty $-category $\operatorname{\mathcal{C}}_{f/}$ is nonempty. If $K = \emptyset $, then this follows immediately from assumption $(\ast '_{0} )$. Otherwise, the simplicial set $K$ has dimension $m$ for some integer $m \geq 0$. We proceed by induction on $m$ and on the number of nondegenerate $m$-simplices of $K$. Choose a nondegenerate $m$-simplex $\sigma : \Delta ^ m \rightarrow K$. Using Proposition 1.1.4.12, we can choose a pushout diagram
\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\partial \Delta }^{m} \ar [r] \ar [d] & \Delta ^{m} \ar [d]^{\sigma } \\ K' \ar [r] & K } \]
where $K' \subseteq K$ is a simplicial subset having a smaller number of nondegenerate $m$-simplices. Set $f' = f|_{K'}$, $f_{0} = f \circ \sigma $, and $f'_0 = f \circ \sigma |_{ \operatorname{\partial \Delta }^ m}$, so that we have a pullback diagram of $\infty $-categories
\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}_{f/} \ar [r] \ar [d] & \operatorname{\mathcal{C}}_{ f' / } \ar [d]^{\Phi } \\ \operatorname{\mathcal{C}}_{ f_0 / } \ar [r]^-{\Psi } & \operatorname{\mathcal{C}}_{ f'_0 / }. } \]
Applying our inductive hypothesis, we deduce that the $\infty $-category $\operatorname{\mathcal{C}}_{f'/}$ is nonempty. Choose an object $X$ of $\operatorname{\mathcal{C}}_{f'/}$, so that $\Phi (X) \in \operatorname{\mathcal{C}}_{ f_{\operatorname{\partial \Delta }} / }$ can be identified with a morphism of simplicial sets $g: (\operatorname{\partial \Delta }^ m)^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$. Amalgamating $f \circ \sigma $ with $g$, we obtain a morphism of simplicial sets
\[ \overline{g}: \operatorname{\partial \Delta }^{m+1} \simeq ( \operatorname{\partial \Delta }^{m} )^{\triangleright } {\coprod }_{ \operatorname{\partial \Delta }^{m} } \Delta ^ m \rightarrow \operatorname{\mathcal{C}}. \]
Invoking $(\ast _{m+1})$, we conclude that $\overline{g}$ can be extended to a morphism of simplicial sets $( \operatorname{\partial \Delta }^{m+1 } )^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$. Unwinding the definitions, we see that this extension supplies an object $Y \in \operatorname{\mathcal{C}}_{ f_0 / }$ together with a morphism $u: \Phi (X) \rightarrow \Psi (Y)$ in the $\infty $-category $\operatorname{\mathcal{C}}_{ f'_0 / }$.
Note that the projection maps $\operatorname{\mathcal{C}}_{f' / } \rightarrow \operatorname{\mathcal{C}}\leftarrow \operatorname{\mathcal{C}}_{ f'_0 / }$ are left fibrations (Proposition 4.3.6.1). Let $\overline{X}$ denote the image of $X$ in the $\infty $-category $\operatorname{\mathcal{C}}$, so that Corollary 4.3.7.13 guarantees that the vertical maps in the diagram
\[ \xymatrix@R =50pt@C=50pt{ (\operatorname{\mathcal{C}}_{f'/})_{X/} \ar [rr]^{ \Phi _{X/} } \ar [dr] & & (\operatorname{\mathcal{C}}_{ f'_0 / } )_{U(X) / } \ar [dl] \\ & \operatorname{\mathcal{C}}_{ \overline{X} / } & } \]
are trivial Kan fibrations. In particular, they are equivalences of $\infty $-categories, so that the functor $\Phi _{X/}$ is also an equivalence of $\infty $-categories. It follows that we can choose a morphism $w: X \rightarrow Z$ in the $\infty $-category $\operatorname{\mathcal{C}}_{f'/}$ and a $2$-simplex
\[ \xymatrix@R =50pt@C=50pt{ & \Psi (Y) \ar [dr]^{v} & \\ \Phi (X) \ar [ur]^{u} \ar [rr]^{ \Phi (w) } & & \Phi (Z) } \]
in the $\infty $-category $\operatorname{\mathcal{C}}_{ f'_0 / }$, where $v$ is an isomorphism. Since $\Psi $ is a left fibration (Corollary 4.3.6.12), we can lift $v$ to a morphism $\widetilde{v}: Y \rightarrow \widetilde{Z}$ of the $\infty $-category $\operatorname{\mathcal{C}}_{ f_0 / }$. The pair $(Z, \widetilde{Z})$ can then be regarded as an object of the $\infty $-category $\operatorname{\mathcal{C}}_{f/} = \operatorname{\mathcal{C}}_{ f' / } \times _{ \operatorname{\mathcal{C}}_{ f'_0 / } } \operatorname{\mathcal{C}}_{ f_0 / }$.
$\square$
For each integer $n \geq 1$, let us identify the standard simplex $\Delta ^{n-1}$ with its image in $\operatorname{\partial \Delta }^{n} \subset \Delta ^ n$ (given by the face opposite the $n$th vertex).
Lemma 9.1.2.14. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $n \geq 1$ be an integer. Then condition $(\ast '_ n)$ of Lemma 9.1.2.12 is equivalent to the following:
- $(\ast ''_ n)$
Let $f: \operatorname{\partial \Delta }^ n \rightarrow \operatorname{\mathcal{C}}$ be a morphism of simplicial sets for which the restriction $f|_{ \Delta ^{n-1} }$ is constant. Then $f$ can be extended to a morphism $\overline{f}: ( \operatorname{\partial \Delta }^{n} )^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$.
Proof.
The implication $(\ast '_ n) \Rightarrow (\ast ''_{n} )$ is immediate. We will prove the converse. Assume that $(\ast ''_ n)$ is satisfied, and let $g: \operatorname{\partial \Delta }^ n \rightarrow \operatorname{\mathcal{C}}$ be an arbitrary morphism of simplicial sets; we wish to show that $g$ can be extended to a morphism $\overline{g}: ( \operatorname{\partial \Delta }^{n} )^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$. If $n=1$, this follows immediately form $(\ast ''_ n)$; we will therefore assume that $n \geq 2$. Note that we can write $\operatorname{\partial \Delta }^{n}$ as the union of $\Delta ^{n-1}$ and the horn $\Lambda ^{n}_{n}$, whose intersection is the simplicial subset $\operatorname{\partial \Delta }^{n-1} \subset \Delta ^{n-1}$. Set
\[ g_{-} = g|_{ \Delta ^{n-1} } \quad \quad g_{\pm } = g|_{ \operatorname{\partial \Delta }^{n-1} } \quad \quad g_{+} = g|_{ \Lambda ^{n}_{n} }. \]
Let $X = g(0)$ and $Y = g(n)$ and let $\pi : \operatorname{\mathcal{C}}_{/Y} \rightarrow \operatorname{\mathcal{C}}$ denote the projection map, so that we can identify $g_{+}$ with a morphism $\widetilde{g}_{\pm }: \operatorname{\partial \Delta }^{n-1} \rightarrow \operatorname{\mathcal{C}}_{/Y}$ satisfying $\pi \circ \widetilde{g}_{\pm } = g_{\pm }$.
Let $f_{-}: \Delta ^{n-1} \rightarrow \operatorname{\mathcal{C}}$ be the constant morphism taking the value $X$, and let $h_{-}: f_{-} \rightarrow g_{-}$ be the natural transformation given by the composite map
\[ \Delta ^{1} \times \Delta ^{n-1} \xrightarrow {(i,j) \mapsto ij} \Delta ^{n-1} \xrightarrow { g_{-} } \operatorname{\mathcal{C}}. \]
Set $f_{\pm } = f_{-} |_{ \operatorname{\partial \Delta }^{n-1} }$ and $h_{\pm } = h_{-} |_{ \Delta ^1 \times \operatorname{\partial \Delta }^{n-1} }$, so that $h_{\pm }$ can be regarded as a natural transformation from $f_{\pm }$ to $g_{\pm }$. Since $\pi $ is a right fibration, we can lift $h_{\pm }$ to a natural transformation $\widetilde{h}_{\pm }: \widetilde{f}_{\pm } \rightarrow \widetilde{g}_{\pm }$ in the $\infty $-category $\operatorname{Fun}( \operatorname{\partial \Delta }^{n-1}, \operatorname{\mathcal{C}}_{/Y} )$. Let us identify $\widetilde{f}_{\pm }$ with a morphism of simplicial sets $f_{+}: \Lambda ^{n}_{n} \rightarrow \operatorname{\mathcal{C}}$ satisfying $f_{+}(n) = Y$. Then $\widetilde{h}_{\pm }$ determines a natural transformation $h_{+}: f_{+} \rightarrow g_{+}$, given by the composition
\[ \Delta ^1 \times \Lambda ^{n}_{n} \simeq \Delta ^1 \times (\operatorname{\partial \Delta }^{n-1} )^{\triangleright } \rightarrow ( \Delta ^1 \times \operatorname{\partial \Delta }^{n-1} )^{\triangleright } \xrightarrow { \widetilde{h}_{\pm } } (\operatorname{\mathcal{C}}_{/Y})^{\triangleright } \rightarrow \operatorname{\mathcal{C}}. \]
Note that $f_{-}$ and $f_{+}$ can be amalgamated to a morphism $f: \operatorname{\partial \Delta }^{n} \rightarrow \operatorname{\mathcal{C}}$, and that $h_{-}$ and $h_{+}$ can be amalgamated to a natural transformation $h: f \rightarrow g$ in $\operatorname{Fun}( \operatorname{\partial \Delta }^{n}, \operatorname{\mathcal{C}})$.
Invoking hypothesis $(\ast ''_{n})$, we see that $f$ can be extended to a morphism $\overline{f}: ( \operatorname{\partial \Delta }^{n} )^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$. Let $Z \in \operatorname{\mathcal{C}}$ denote the image under $\overline{f}$ of the cone point and let $\varphi : \operatorname{\mathcal{C}}_{/Z} \rightarrow \operatorname{\mathcal{C}}$ denote the projection map, so that $\overline{f}$ can be identified with a morphism of simplicial sets $f': \operatorname{\partial \Delta }^{n} \rightarrow \operatorname{\mathcal{C}}_{/Z}$ satisfying $\varphi \circ f' = f$. Let us identify the vertex $f'(n) \in \operatorname{\mathcal{C}}_{/Z}$ with a morphism $v: Y \rightarrow Z$ in the $\infty $-category $\operatorname{\mathcal{C}}$, so that we have a commutative diagram
\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}_{/v} \ar [r]^-{\varphi '} \ar [d]^{\pi '} & \operatorname{\mathcal{C}}_{/Y} \ar [d]^{\pi } \\ \operatorname{\mathcal{C}}_{/Z} \ar [r]^-{ \varphi } & \operatorname{\mathcal{C}}. } \]
Set $f'_{+} = f'|_{ \Lambda ^{n}_{n} }$ and $f'_{\pm } = f'|_{ \operatorname{\partial \Delta }^{n-1} }$, so that we can identify $f'_{+}$ with a morphism $\widetilde{f}'_{\pm }: \operatorname{\partial \Delta }^{n-1} \rightarrow \operatorname{\mathcal{C}}_{/v}$ satisfying $\pi ' \circ \widetilde{f}'_{\pm } = f'_{+}$. Since the inclusion $\{ 0\} \hookrightarrow \Delta ^{1}$ is left anodyne, the morphism $\varphi ': \operatorname{\mathcal{C}}_{/v} \rightarrow \operatorname{\mathcal{C}}_{/Y}$ is a trivial Kan fibration (Corollary 4.3.6.14). We can therefore lift $\widetilde{h}_{\pm }$ to a natural transformation $\widetilde{h}'_{\pm }: \widetilde{f}'_{\pm } \rightarrow \widetilde{g}'_{\pm }$ for some morphism $\widetilde{g}'_{\pm }: \operatorname{\partial \Delta }^{n-1} \rightarrow \operatorname{\mathcal{C}}_{/v}$. Let us identify $\widetilde{g}'_{\pm }$ with a morphism $g'_{+}: \Lambda ^{n}_{n} \rightarrow \operatorname{\mathcal{C}}_{/Z}$ satisfying $\varphi \circ g'_{+} = g_{+}$. Then $\widetilde{h}'_{\pm }$ determines a natural transformation $h'_{+}: f'_{+} \rightarrow g'_{+}$, given by the composition
\[ \Delta ^1 \times \Lambda ^{n}_{n} \simeq \Delta ^1 \times (\operatorname{\partial \Delta }^{n-1} )^{\triangleright } \rightarrow ( \Delta ^1 \times \operatorname{\partial \Delta }^{n-1} )^{\triangleright } \xrightarrow { \widetilde{h}'_{\pm } } (\operatorname{\mathcal{C}}_{/v})^{\triangleright } \rightarrow \operatorname{\mathcal{C}}_{/Z}. \]
Let $e$ denote the restriction $h'_{+} |_{ \Delta ^1 \times \{ 0\} }$, which we regard as an edge of the simplicial set $\operatorname{\mathcal{C}}_{/Z}$. By construction, $\varphi (e)$ is the degenerate edge $\operatorname{id}_{X}$ of $\operatorname{\mathcal{C}}$. Since $\varphi $ is a right fibration (Proposition 4.3.6.1), it follows that $e$ is an isomorphism in $\operatorname{\mathcal{C}}_{/Z}$ (Proposition 4.4.2.11). Applying Proposition 4.4.5.8, we deduce that the lifting problem
\[ \xymatrix@C =50pt@R=50pt{ (\Delta ^1 \times \Lambda ^{n}_{n} ) {\coprod }_{ ( \{ 0\} \times \Lambda ^{n}_{n} )} ( \{ 0\} \times \operatorname{\partial \Delta }^{n} ) \ar [r]^-{(h'_{+}, f')} \ar [d] & \operatorname{\mathcal{C}}_{/Z} \ar [d]^{\varphi } \\ \Delta ^1 \times \operatorname{\partial \Delta }^{n} \ar [r]^-{h} \ar@ {-->}[ur]^{h'} & \operatorname{\mathcal{C}}} \]
admits a solution. The morphism $h'$ is then a natural transformation from $f'$ to a morphism $g': \operatorname{\partial \Delta }^{n} \rightarrow \operatorname{\mathcal{C}}_{/Z}$, which we can identify with a map $\overline{g}: ( \operatorname{\partial \Delta }^{n} )^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ satisfying $\overline{g}|_{ \operatorname{\partial \Delta }^{n} } = g$.
$\square$
Proof of Theorem 9.1.2.5.
Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and suppose that the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ is homotopy filtered; we wish to show that $\operatorname{\mathcal{C}}$ is filtered (the reverse implication follows from Lemma 9.1.2.11). By virtue of Lemma 9.1.2.12, it will suffice to show that for every integer $n \geq 0$, every morphism of simplicial sets $f: \operatorname{\partial \Delta }^ n \rightarrow \operatorname{\mathcal{C}}$ can be extended to a morphism $\overline{f}: (\operatorname{\partial \Delta }^ n)^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$. For $n = 0$, this follows from our assumption that $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ is nonempty. We will therefore assume that $n > 0$. By virtue of Lemma 9.1.2.14, we may assume without loss of generality that the restriction $f_{-} = f|_{ \Delta ^{n-1} }$ is the constant map taking the value $X$ for some object $X \in \operatorname{\mathcal{C}}$. Set $Y = f(n)$ and let $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{R}}(X,Y) = \{ X\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/Y}$ denote the right-pinched morphism space of Construction 4.6.5.1, so that we can identify $f|_{ \Lambda ^{n}_{n} }$ with a morphism of simplicial sets $g: \operatorname{\partial \Delta }^{n-1} \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{R}}(X,Y)$. Invoking assumption $(\ast _ n)$ of Definition 9.1.2.1, we deduce that there exists a morphism $v: Y \rightarrow Z$ in $\operatorname{\mathcal{C}}$ for which the composite map
\[ \operatorname{\partial \Delta }^{n-1} \xrightarrow {g} \operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{R}}(X,Y) \hookrightarrow \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \xrightarrow {[v] \circ } \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z) \]
is nullhomotopic. Since the projection map $\operatorname{\mathcal{C}}_{/f} \rightarrow \operatorname{\mathcal{C}}_{/Y}$ is a trivial Kan fibration (Corollary 4.3.6.14), we can lift $g$ to a morphism $\widetilde{g}: \operatorname{\partial \Delta }^{n-1} \rightarrow \{ X\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/f}$. Combining Propositions 5.2.8.7 and 4.6.9.16, we deduce that the diagram of Kan complexes
\[ \xymatrix@R =50pt@C=50pt{ \{ X\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/Y} \ar [d]^{\iota _{X,Y}^{\mathrm{R}}} & \{ X\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/f} \ar [r] \ar [l] & \{ X\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/Z} \ar [d]^{\iota ^{\mathrm{R}}_{X,Z}} \\ \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \ar [rr]^{[v] \circ } & & \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z) } \]
commutes up to homotopy, where $\iota _{X,Y}^{\mathrm{R}}$ and $\iota _{X,Z}^{\mathrm{R}}$ are the right-pinch inclusion morphisms of Construction 4.6.5.7. Since $\iota ^{\mathrm{R}}_{X,Z}$ is a homotopy equivalence (Proposition 4.6.5.10), it follows that the composite map $\operatorname{\partial \Delta }^{n-1} \xrightarrow {\widetilde{g}} \{ X\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/f} \rightarrow \{ X\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/Z}$ is nullhomotopic, and can therefore be extended to an $(n-1)$-simplex $g': \Delta ^{n-1} \rightarrow \{ X\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/Z}$ (Variant 3.2.4.12). Unwinding the definitions, we can identify $\widetilde{g}$ and $g'$ with morphisms $(\Lambda ^{n}_{n})^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ and $( \Delta ^{n-1 })^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$, which can be amalgamated to a single morphism $\overline{f}: ( \operatorname{\partial \Delta }^{n} )^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ extending $f$.
$\square$
Exercise 9.1.2.15. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $n \geq 1$ be an integer. Show that the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ satisfies condition $(\ast _ n)$ of Definition 9.1.2.1 if and only if $\operatorname{\mathcal{C}}$ satisfies condition $(\ast '_{n})$ of Lemma 9.1.2.12.