Definition 9.1.1.1. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. We say that $\operatorname{\mathcal{C}}$ is filtered if, for every finite simplicial set $K$, every diagram $f: K \rightarrow \operatorname{\mathcal{C}}$ admits an extension $\overline{f}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$.
9.1.1 Filtered $\infty $-Categories
Definition 9.1.0.1 has a counterpart in the setting of $\infty $-categories.
In ยง9.1.2, we will show that Definition 9.1.1.1 is a generalization of Definition 9.1.0.1: that is, a category $\operatorname{\mathcal{C}}$ is filtered if and only if the $\infty $-category $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ is filtered (Corollary 9.1.2.8).
Example 9.1.1.2. Let $(A, \leq )$ be a partially ordered set. Then the $\infty $-category $\operatorname{N}_{\bullet }(A)$ is filtered if and only if $(A, \leq )$ is directed: that, every finite subset $A_0 \subseteq A$ has an upper bound.
Variant 9.1.1.3. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. We say that $\operatorname{\mathcal{C}}$ is cofiltered if, for every finite simplicial set $K$, every diagram $f: K \rightarrow \operatorname{\mathcal{C}}$ admits an extension $\overline{f}: K^{\triangleleft } \rightarrow \operatorname{\mathcal{C}}$. Equivalently, $\operatorname{\mathcal{C}}$ is cofiltered if the opposite $\infty $-category $\operatorname{\mathcal{C}}^{\operatorname{op}}$ is filtered.
It will sometimes be convenient to work with a generalization of Definition 9.1.1.1.
Variant 9.1.1.4. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\kappa $ be an infinite cardinal. We say that $\operatorname{\mathcal{C}}$ is $\kappa $-filtered if, for every $\kappa $-small simplicial set $K$, every diagram $f: K \rightarrow \operatorname{\mathcal{C}}$ admits an extension $\overline{f}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$.
Example 9.1.1.5. An $\infty $-category $\operatorname{\mathcal{C}}$ is filtered (in the sense of Definition 9.1.1.1) if and only if it is $\aleph _0$-filtered (in the sense of Variant 9.1.1.4).
Example 9.1.1.6. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which contains a final object $X$. Then every morphism of simplicial sets $f: K \rightarrow \operatorname{\mathcal{C}}$ can be extended to a morphism $\overline{f}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ which carries the cone point of $K^{\triangleright }$ to the object $X$. In particular, the $\infty $-category $\operatorname{\mathcal{C}}$ is $\kappa $-filtered for every infinite cardinal $\kappa $. For a more general statement, see Proposition 9.1.6.1.
Example 9.1.1.7. Let $(A, \leq )$ be a partially ordered set and let $\kappa $ be a cardinal. Then the $\infty $-category $\operatorname{N}_{\bullet }(A)$ is $\kappa $-filtered if and only if every $\kappa $-small subset $A_0 \subseteq A$ has an upper bound. If this condition is satisfied, we say that the partially ordered set $(A, \leq )$ is $\kappa $-directed.
Remark 9.1.1.8 (Monotonicity). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\kappa \leq \lambda $ be infinite cardinals. If $\operatorname{\mathcal{C}}$ is $\lambda $-filtered, then it is $\kappa $-filtered. In particular, if $\operatorname{\mathcal{C}}$ is $\lambda $-filtered, then it is filtered.
Remark 9.1.1.9. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\kappa $ be a singular cardinal. Then $\operatorname{\mathcal{C}}$ is $\kappa $-filtered if and only if it is $\kappa '$-filtered, for every infinite cardinal $\kappa ' < \kappa $. We will soon see that this is also equivalent to the requirement that $\operatorname{\mathcal{C}}$ is $\kappa ^{+}$-filtered (Corollary 9.1.5.9). Consequently, there is generally no harm in restricting Variant 9.1.1.4 to the special case where $\kappa $ is regular.
Remark 9.1.1.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\kappa $ be an infinite cardinal. The following conditions are equivalent:
The $\infty $-category $\operatorname{\mathcal{C}}$ is $\kappa $-filtered.
For every $\kappa $-small simplicial set $K$ and every diagram $f: K \rightarrow \operatorname{\mathcal{C}}$, the coslice $\infty $-category $\operatorname{\mathcal{C}}_{f/}$ is nonempty.
For every $\kappa $-small simplicial set $K$ and every diagram $f: K \rightarrow \operatorname{\mathcal{C}}$, the oriented fiber product $\{ f\} \operatorname{\vec{\times }}_{ \operatorname{Fun}(K,\operatorname{\mathcal{C}}) } \operatorname{\mathcal{C}}$ is nonempty.
For every $\kappa $-small simplicial set $K$ and every diagram $f: K \rightarrow \operatorname{\mathcal{C}}$, there exists a morphism $f \rightarrow f'$ in the $\infty $-category $\operatorname{Fun}(K,\operatorname{\mathcal{C}})$, where $f': K \rightarrow \operatorname{\mathcal{C}}$ is a constant diagram.
The equivalences $(1) \Leftrightarrow (2)$ and $(3) \Leftrightarrow (4)$ follow immediately from the definitions, and the equivalence $(2) \Leftrightarrow (3)$ follows from Theorem 4.6.4.17.
Remark 9.1.1.11. In the situation of Remark 9.1.1.10, suppose that $\kappa $ is uncountable. If $\operatorname{\mathcal{C}}$ is $\kappa $-filtered, then it satisfies the following a priori stronger versions of conditions $(2)$, $(3)$, and $(4)$:
For every essentially $\kappa $-small simplicial set $K$ and every diagram $f: K \rightarrow \operatorname{\mathcal{C}}$, the coslice $\infty $-category $\operatorname{\mathcal{C}}_{f/}$ is nonempty.
For every essentially $\kappa $-small simplicial set $K$ and every diagram $f: K \rightarrow \operatorname{\mathcal{C}}$, the oriented fiber product $\{ f\} \operatorname{\vec{\times }}_{ \operatorname{Fun}(K,\operatorname{\mathcal{C}}) } \operatorname{\mathcal{C}}$ is nonempty.
For every essentially $\kappa $-small simplicial set $K$ and every diagram $f: K \rightarrow \operatorname{\mathcal{C}}$, there exists a morphism $f \rightarrow f'$ in the $\infty $-category $\operatorname{Fun}(K,\operatorname{\mathcal{C}})$, where $f': K \rightarrow \operatorname{\mathcal{C}}$ is a constant diagram.
The implication $(4) \Rightarrow (4')$ follows by choosing a categorical equivalence $K \rightarrow \operatorname{\mathcal{K}}$, where $\operatorname{\mathcal{K}}$ is a $\kappa $-small $\infty $-category. The equivalence $(3') \Leftrightarrow (4')$ is immediate, and the equivalence $(2') \Leftrightarrow (3')$ follows from Theorem 4.6.4.17.
Proposition 9.1.1.12. Let $\kappa $ be an infinite cardinal, let $\operatorname{\mathcal{C}}$ be a $\kappa $-filtered $\infty $-category and let $f: K \rightarrow \operatorname{\mathcal{C}}$ be a diagram, where $K$ is a $\kappa $-small simplicial set. Then the $\infty $-category $\operatorname{\mathcal{C}}_{f/}$ is also $\kappa $-filtered.
Proof. By virtue of Remark 9.1.1.10, it will suffice to show that for every $\kappa $-small simplicial set $L$ and every morphism $g: L \rightarrow \operatorname{\mathcal{C}}_{f/}$, the $\infty $-category $(\operatorname{\mathcal{C}}_{f/} )_{g/}$ is nonempty. Unwinding the definitions, we can identify $g$ with a morphism of simplicial sets $\overline{f}: K \star L \rightarrow \operatorname{\mathcal{C}}$ satisfying $\overline{f}|_{K} = f$. This identification supplies an isomorphism $(\operatorname{\mathcal{C}}_{f/} )_{g/} \simeq \operatorname{\mathcal{C}}_{ \overline{f} / }$. We are therefore reduced to showing that the coslice $\infty $-category $\operatorname{\mathcal{C}}_{ \overline{f} / }$ is nonempty. This follows from Remark 9.1.1.10, since the simplicial set $K \star L$ is $\kappa $-small (Corollary 4.7.4.13). $\square$
Proposition 9.1.1.13. Let $\operatorname{\mathcal{C}}$ be a filtered $\infty $-category. Then $\operatorname{\mathcal{C}}$ is weakly contractible.
Proof. By virtue of Proposition 3.1.7.1, there exists a functor $Q: \operatorname{Set_{\Delta }}\rightarrow \operatorname{Set_{\Delta }}$ and a natural transformation $u: \operatorname{id}_{\operatorname{Set_{\Delta }}} \rightarrow Q$ with the following properties:
The functor $Q$ commutes with filtered colimits.
For every simplicial set $X$, the simplicial set $Q(X)$ is a Kan complex.
For every simplicial set $X$, the morphism $u_{X}: X \rightarrow Q(X)$ is a weak homotopy equivalence.
To show that $\operatorname{\mathcal{C}}$ is weakly contractible, it will suffice to show that the Kan complex $Q(\operatorname{\mathcal{C}})$ is contractible. Note that $\operatorname{\mathcal{C}}$ is nonempty, so that $Q(\operatorname{\mathcal{C}})$ is also nonempty. It will therefore suffice to show that for every integer $n \geq 0$, every morphism of simplicial sets $\sigma : \operatorname{\partial \Delta }^ n \rightarrow Q(\operatorname{\mathcal{C}})$ is nullhomotopic (see Variant 3.2.4.12). Since the simplicial set $\operatorname{\partial \Delta }^ n$ is finite and the functor $Q$ commutes with filtered colimits, the morphism $\sigma $ factors as a composition $\operatorname{\partial \Delta }^ n \rightarrow Q(K) \xrightarrow {Q(\iota )} Q(\operatorname{\mathcal{C}})$, where $K$ is a finite simplicial subset of $\operatorname{\mathcal{C}}$ and $\iota : K \hookrightarrow \operatorname{\mathcal{C}}$ denotes the inclusion map. We will complete the proof by showing that $Q(\iota )$ is nullhomotopic. Since $u_{K}: K \rightarrow Q(K)$ is a weak homotopy equivalence, this is equivalent to assertion that the composite morphism $Q(\iota ) \circ u_{K} = u_{\operatorname{\mathcal{C}}} \circ \iota $ is nullhomotopic. This is clear: our assumption that $\operatorname{\mathcal{C}}$ is filtered guarantees that there exists a natural transformation from $\iota $ to a constant diagram $K \rightarrow \operatorname{\mathcal{C}}$ (Remark 9.1.1.10). $\square$
Proposition 9.1.1.14. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\kappa $ be an infinite cardinal. The following conditions are equivalent:
The $\infty $-category $\operatorname{\mathcal{C}}$ is $\kappa $-filtered.
For every $\kappa $-small simplicial set $K$ and every morphism $f: K \rightarrow \operatorname{\mathcal{C}}$, the $\infty $-category $\operatorname{\mathcal{C}}_{f/}$ is $\kappa $-filtered.
For every $\kappa $-small simplicial set $K$ and every morphism $f: K \rightarrow \operatorname{\mathcal{C}}$, the $\infty $-category $\operatorname{\mathcal{C}}_{f/}$ is filtered.
For every $\kappa $-small simplicial set and every morphism $f: K \rightarrow \operatorname{\mathcal{C}}$, the $\infty $-category $\operatorname{\mathcal{C}}_{f/}$ is weakly contractible.
For every $\kappa $-small simplicial set $K$, the diagonal map $\delta : \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}(K,\operatorname{\mathcal{C}})$ is right cofinal.
Proof. The implication $(1) \Rightarrow (2)$ follows from Proposition 9.1.1.12, the implication $(2) \Rightarrow (3)$ from Remark 9.1.1.8, the implication $(3) \Rightarrow (4)$ Proposition 9.1.1.13, and the implication $(4) \Rightarrow (1)$ is immediate from the definitions (Remark 9.1.1.10). The equivalence $(4) \Leftrightarrow (5)$ is a special case of Corollary 7.2.3.9. $\square$
Corollary 9.1.1.15. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an equivalence of $\infty $-categories and let $\kappa $ be an infinite cardinal. Then $\operatorname{\mathcal{C}}$ is $\kappa $-filtered if and only if $\operatorname{\mathcal{D}}$ is $\kappa $-filtered.
Proof. By virtue of Proposition 9.1.1.14, it will suffice to show that for every ($\kappa $-small) simplicial set $K$, the diagonal map $\delta _{\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}(K,\operatorname{\mathcal{C}})$ is right cofinal if and only if the diagonal map $\delta _{\operatorname{\mathcal{D}}}: \operatorname{\mathcal{D}}\rightarrow \operatorname{Fun}(K,\operatorname{\mathcal{D}})$ is right cofinal. This follows by applying Corollary 7.2.1.22 to the commutative diagram of $\infty $-categories
Corollary 9.1.1.16. Let $\operatorname{\mathcal{C}}$ be a Kan complex. Then $\operatorname{\mathcal{C}}$ is filtered if and only if it is contractible.
Proof. If $\operatorname{\mathcal{C}}$ is a contractible Kan complex, then there exists a categorical equivalence $\operatorname{\mathcal{C}}\rightarrow \Delta ^0$, so that $\operatorname{\mathcal{C}}$ is filtered by virtue of Corollary 9.1.1.15. The converse is a special case of Proposition 9.1.1.13. $\square$