Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 7.2.3.9. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $K$ be a simplicial set. The following conditions are equivalent:

$(1)$

The diagonal map $\delta : \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}(K,\operatorname{\mathcal{C}})$ is right cofinal.

$(2)$

For every diagram $f: K \rightarrow \operatorname{\mathcal{C}}$, the coslice $\infty $-category $\operatorname{\mathcal{C}}_{f/}$ is weakly contractible.

Proof. By virtue of Remark 7.2.3.2, condition $(1)$ is equivalent to the requirement that for every diagram $f: K \rightarrow \operatorname{\mathcal{C}}$, the oriented fiber product $\{ f\} \operatorname{\vec{\times }}_{ \operatorname{Fun}(K, \operatorname{\mathcal{C}}) } \operatorname{\mathcal{C}}$ is weakly contractible. The equivalence of $(1)$ and $(2)$ now follows from Theorem 4.6.4.17. $\square$