Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 9.1.1.14. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\kappa $ be an infinite cardinal. The following conditions are equivalent:

$(1)$

The $\infty $-category $\operatorname{\mathcal{C}}$ is $\kappa $-filtered.

$(2)$

For every $\kappa $-small simplicial set $K$ and every morphism $f: K \rightarrow \operatorname{\mathcal{C}}$, the $\infty $-category $\operatorname{\mathcal{C}}_{f/}$ is $\kappa $-filtered.

$(3)$

For every $\kappa $-small simplicial set $K$ and every morphism $f: K \rightarrow \operatorname{\mathcal{C}}$, the $\infty $-category $\operatorname{\mathcal{C}}_{f/}$ is filtered.

$(4)$

For every $\kappa $-small simplicial set and every morphism $f: K \rightarrow \operatorname{\mathcal{C}}$, the $\infty $-category $\operatorname{\mathcal{C}}_{f/}$ is weakly contractible.

$(5)$

For every $\kappa $-small simplicial set $K$, the diagonal map $\delta : \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}(K,\operatorname{\mathcal{C}})$ is right cofinal.

Proof. The implication $(1) \Rightarrow (2)$ follows from Proposition 9.1.1.12, the implication $(2) \Rightarrow (3)$ from Remark 9.1.1.8, the implication $(3) \Rightarrow (4)$ Proposition 9.1.1.13, and the implication $(4) \Rightarrow (1)$ is immediate from the definitions (Remark 9.1.1.10). The equivalence $(4) \Leftrightarrow (5)$ is a special case of Corollary 7.2.3.9. $\square$