Corollary 9.1.1.15. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an equivalence of $\infty $-categories and let $\kappa $ be an infinite cardinal. Then $\operatorname{\mathcal{C}}$ is $\kappa $-filtered if and only if $\operatorname{\mathcal{D}}$ is $\kappa $-filtered.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$
Proof. By virtue of Proposition 9.1.1.14, it will suffice to show that for every ($\kappa $-small) simplicial set $K$, the diagonal map $\delta _{\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}(K,\operatorname{\mathcal{C}})$ is right cofinal if and only if the diagonal map $\delta _{\operatorname{\mathcal{D}}}: \operatorname{\mathcal{D}}\rightarrow \operatorname{Fun}(K,\operatorname{\mathcal{D}})$ is right cofinal. This follows by applying Corollary 7.2.1.22 to the commutative diagram of $\infty $-categories
\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}\ar [r]^-{\delta _{\operatorname{\mathcal{C}}} } \ar [d]^{F} & \operatorname{Fun}(K,\operatorname{\mathcal{C}}) \ar [d]^{ F \circ } \\ \operatorname{\mathcal{D}}\ar [r]^-{ \delta _{\operatorname{\mathcal{D}}} } & \operatorname{Fun}(K, \operatorname{\mathcal{D}}). } \]
$\square$