Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 9.1.1.16. Let $\operatorname{\mathcal{C}}$ be a Kan complex. Then $\operatorname{\mathcal{C}}$ is filtered if and only if it is contractible.

Proof. If $\operatorname{\mathcal{C}}$ is a contractible Kan complex, then there exists a categorical equivalence $\operatorname{\mathcal{C}}\rightarrow \Delta ^0$, so that $\operatorname{\mathcal{C}}$ is filtered by virtue of Corollary 9.1.1.15. The converse is a special case of Proposition 9.1.1.13. $\square$