Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

9 Large $\infty $-Categories

Structure

  • Section 9.1: Filtered $\infty $-Categories
    • Subsection 9.1.1: Filtered $\infty $-Categories
    • Subsection 9.1.2: Local Characterization of Filtered $\infty $-Categories
    • Subsection 9.1.3: Fibrations over Filtered $\infty $-Categories
    • Subsection 9.1.4: Digression: Commutation of Limits and Colimits
    • Subsection 9.1.5: Filtered Colimits of Spaces
    • Subsection 9.1.6: Filtered Colimits of Simplicial Sets
    • Subsection 9.1.7: Approximation by Simplicial Subsets
    • Subsection 9.1.8: Approximation by Partially Ordered Sets
    • Subsection 9.1.9: Finitary Functors
    • Subsection 9.1.10: Filtered Colimits of $\infty $-Categories
  • Section 9.2: Compact Objects and Ind-Completion
    • Subsection 9.2.1: Ind-Completion
    • Subsection 9.2.2: Compact Objects
    • Subsection 9.2.3: Recognition of Ind-Completions
    • Subsection 9.2.4: Flat Functors
    • Subsection 9.2.5: Exact Functors
    • Subsection 9.2.6: Compactly Generated $\infty $-Categories
    • Subsection 9.2.7: Finiteness Conditions on Spaces
    • Subsection 9.2.8: Finiteness Conditions on $\infty $-Categories
    • Subsection 9.2.9: Transitivity of $\operatorname{Ind}$-Completion
  • Section 9.3: Local Objects and Factorization Systems
    • Subsection 9.3.1: Digression: Transfinite Composition
    • Subsection 9.3.2: Weakly Local Objects
    • Subsection 9.3.3: The Small Object Argument
    • Subsection 9.3.4: Lifting Problems in $\infty $-Categories
    • Subsection 9.3.5: Weak Factorization Systems
    • Subsection 9.3.6: Orthogonality
    • Subsection 9.3.7: Uniqueness of Factorizations
    • Subsection 9.3.8: Factorization Systems
  • Section 9.4: Truncated Objects of $\infty $-Categories
    • Subsection 9.4.1: Truncated Objects
    • Subsection 9.4.2: Example: Discrete and Subterminal Objects
    • Subsection 9.4.3: Truncated Morphisms
    • Subsection 9.4.4: Monomorphisms