Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

9.2.1 Ind-Completion

Recall that, if $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ are $\infty $-categories which admit small filtered colimits, then $\operatorname{Fun}^{\operatorname{fin}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$ denotes the full subcategory of $\operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$ spanned by those functors which preserve small filtered colimits (Definition 9.1.9.1).

Definition 9.2.1.1. Let $H: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ be a functor of $\infty $-categories. We say that $H$ exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}$-completion of $\operatorname{\mathcal{C}}$ if the following conditions are satisfied:

$(a)$

The $\infty $-category $\widehat{\operatorname{\mathcal{C}}}$ admits small filtered colimits.

$(b)$

Let $\operatorname{\mathcal{D}}$ be any $\infty $-category which admits small filtered colimits. Then precomposition with $H$ induces an equivalence of $\infty $-categories $\operatorname{Fun}^{\operatorname{fin}}( \widehat{\operatorname{\mathcal{C}}}, \operatorname{\mathcal{D}}) \rightarrow \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$.

Notation 9.2.1.2. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. It follows from Proposition 8.4.5.3 that there exists an $\infty $-category $\widehat{\operatorname{\mathcal{C}}}$ and a functor $H: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ which exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}$-completion of $\operatorname{\mathcal{C}}$. In this case, the $\infty $-category $\widehat{\operatorname{\mathcal{C}}}$ is uniquely determined up to equivalence and depends functorially on $\operatorname{\mathcal{C}}$. To emphasize this dependence, we will often denote $\widehat{\operatorname{\mathcal{C}}}$ by $\operatorname{Ind}(\operatorname{\mathcal{C}})$ and refer to it as the $\operatorname{Ind}$-completion of $\operatorname{\mathcal{C}}$. In ยง9.2.4, we will give a more explicit description of the $\infty $-category $\operatorname{Ind}(\operatorname{\mathcal{C}})$ in the case where $\operatorname{\mathcal{C}}$ is essentially small (Proposition 9.2.4.5).

Variant 9.2.1.3 ($\operatorname{Pro}$-Completions). Let $H: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ be a functor of $\infty $-categories. We say that $H$ exhibits $\widehat{\operatorname{\mathcal{C}}}$ as a $\operatorname{Pro}$-completion of $\operatorname{\mathcal{C}}$ if it satisfies the following dual version of Definition 9.2.1.1:

$(a')$

The $\infty $-category $\widehat{\operatorname{\mathcal{C}}}$ admits small cofiltered limits.

$(b')$

If $\operatorname{\mathcal{D}}$ is any $\infty $-category which admits small cofiltered limits, then precomposition with $H$ induces an equivalence $\operatorname{Fun}'( \widehat{\operatorname{\mathcal{C}}}, \operatorname{\mathcal{D}}) \rightarrow \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$, where $\operatorname{Fun}'( \widehat{\operatorname{\mathcal{C}}}, \operatorname{\mathcal{D}})$ is the full subcategory of $\operatorname{Fun}( \widehat{\operatorname{\mathcal{C}}}, \operatorname{\mathcal{D}})$ spanned by those functors which preserve small cofiltered limits.

If these conditions are satisfied, then the $\infty $-category $\widehat{\operatorname{\mathcal{C}}}$ is uniquely determined up to equivalence and depends functorially on $\operatorname{\mathcal{C}}$. To emphasize this dependence, we will often denote $\widehat{\operatorname{\mathcal{C}}}$ by $\operatorname{Pro}(\operatorname{\mathcal{C}})$ and refer to it as the $\operatorname{Pro}$-completion of $\operatorname{\mathcal{C}}$. Note that we have a canonical equivalence $\operatorname{Pro}(\operatorname{\mathcal{C}})^{\operatorname{op}} \simeq \operatorname{Ind}(\operatorname{\mathcal{C}}^{\operatorname{op}})$.

It will sometimes be useful to consider some infinitary counterparts of Definition 9.2.1.1.

Definition 9.2.1.4. Let $\kappa $ be a small regular cardinal. We say that a functor of $\infty $-categories $H: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}_{\kappa }$-completion of $\operatorname{\mathcal{C}}$ if the following conditions are satisfied:

$(a)$

The $\infty $-category $\widehat{\operatorname{\mathcal{C}}}$ admits small $\kappa $-filtered colimits.

$(b)$

Let $\operatorname{\mathcal{D}}$ be any $\infty $-category which admits small $\kappa $-filtered colimits. Then precomposition with $H$ induces an equivalence of $\infty $-categories $\operatorname{Fun}^{\kappa -\operatorname{fin}}( \widehat{\operatorname{\mathcal{C}}}, \operatorname{\mathcal{D}}) \rightarrow \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$.

Here $\operatorname{Fun}^{\kappa -\operatorname{fin}}( \widehat{\operatorname{\mathcal{C}}}, \operatorname{\mathcal{D}})$ denotes the full subcategory of $\operatorname{Fun}( \widehat{\operatorname{\mathcal{C}}}, \operatorname{\mathcal{D}})$ spanned by the $\kappa $-finitary functors (Definition 9.1.9.3).

Notation 9.2.1.5. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\kappa $ be a small regular cardinal. It follows from Proposition 8.4.5.3 that there exists an $\infty $-category $\widehat{\operatorname{\mathcal{C}}}$ and a functor $H: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ which exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}_{\kappa }$-completion of $\operatorname{\mathcal{C}}$. In this case, the $\infty $-category $\widehat{\operatorname{\mathcal{C}}}$ is uniquely determined up to equivalence and depends functorially on $\operatorname{\mathcal{C}}$. To emphasize this dependence, we will often denote $\widehat{\operatorname{\mathcal{C}}}$ by $\operatorname{Ind}_{\kappa }(\operatorname{\mathcal{C}})$.

Example 9.2.1.6. Let $H: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ be a functor of $\infty $-categories. Then $H$ exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}$-completion of $\operatorname{\mathcal{C}}$ (in the sense of Definition 9.2.1.1) if and only if it exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}_{\aleph _0}$-completion of $\operatorname{\mathcal{C}}$ (in the sense of Definition 9.2.1.4). Stated more informally, we have an equivalence of $\infty $-categories $\operatorname{Ind}(\operatorname{\mathcal{C}}) \simeq \operatorname{Ind}_{\aleph _0}(\operatorname{\mathcal{C}})$.

Variant 9.2.1.7. Let $\kappa \leq \lambda $ be regular cardinals. We say that a functor of $\infty $-categories $H: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}_{\kappa }^{\lambda }$-completion of $\operatorname{\mathcal{C}}$ if the following conditions are satisfied:

$(a)$

The $\infty $-category $\widehat{\operatorname{\mathcal{C}}}$ admits $\lambda $-small $\kappa $-filtered colimits.

$(b)$

Let $\operatorname{\mathcal{D}}$ be any $\infty $-category which admits $\lambda $-small $\kappa $-filtered colimits. Then precomposition with $H$ induces an equivalence of $\infty $-categories $\operatorname{Fun}^{(\kappa ,\lambda )-\operatorname{fin}}( \widehat{\operatorname{\mathcal{C}}}, \operatorname{\mathcal{D}}) \rightarrow \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$.

Here $\operatorname{Fun}^{(\kappa ,\lambda )-\operatorname{fin}}( \widehat{\operatorname{\mathcal{C}}}, \operatorname{\mathcal{D}})$ denotes the full subcategory of $\operatorname{Fun}( \widehat{\operatorname{\mathcal{C}}}, \operatorname{\mathcal{D}})$ spanned by the $(\kappa ,\lambda )$-finitary functors (Definition 9.1.9.6).

Notation 9.2.1.8. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\kappa \leq \lambda $ be regular cardinals. It follows from Proposition 8.4.5.3 that there exists an $\infty $-category $\widehat{\operatorname{\mathcal{C}}}$ and a functor $H: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ which exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}_{\kappa }^{\lambda }$-completion of $\operatorname{\mathcal{C}}$. In this case, the $\infty $-category $\widehat{\operatorname{\mathcal{C}}}$ is uniquely determined up to equivalence and depends functorially on $\operatorname{\mathcal{C}}$. To emphasize this dependence, we will often denote $\widehat{\operatorname{\mathcal{C}}}$ by $\operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}})$.

Example 9.2.1.9. Following the convention of Remark 4.7.0.5, a cardinal $\kappa $ is small if it satisfies $\kappa < \operatorname{\textnormal{\cjRL {t}}}$, where $\operatorname{\textnormal{\cjRL {t}}}$ is some fixed strongly inaccessible cardinal. In this case, a functor of $\infty $-categories $H: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}_{\kappa }$-completion of $\operatorname{\mathcal{C}}$ (in the sense of Definition 9.2.1.4) if and only if it exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}_{\kappa }^{\operatorname{\textnormal{\cjRL {t}}}}$-completion of $\operatorname{\mathcal{C}}$ (in the sense of Variant 9.2.1.7). In particular, $H$ exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}$-completion of $\operatorname{\mathcal{C}}$ if and only if it exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}_{\aleph _0}^{\operatorname{\textnormal{\cjRL {t}}}}$-completion of $\operatorname{\mathcal{C}}$. Stated more informally, we have equivalences

\[ \operatorname{Ind}_{\kappa }(\operatorname{\mathcal{C}}) \simeq \operatorname{Ind}_{\kappa }^{\operatorname{\textnormal{\cjRL {t}}}}(\operatorname{\mathcal{C}}) \quad \quad \operatorname{Ind}(\operatorname{\mathcal{C}}) \simeq \operatorname{Ind}_{\aleph _0}^{\operatorname{\textnormal{\cjRL {t}}}}(\operatorname{\mathcal{C}}). \]

Example 9.2.1.10 (Idempotent Completion). Let $\kappa $ be a regular cardinal and let $H: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ be a functor of $\infty $-categories. Then:

  • If $\kappa $ is uncountable, then $H$ exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}_{\kappa }^{\kappa }$-completion of $\operatorname{\mathcal{C}}$ if and only if it exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an idempotent completion of $\operatorname{\mathcal{C}}$.

  • If $\kappa = \aleph _0$, then $H$ exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}_{\kappa }^{\kappa }$-completion of $\operatorname{\mathcal{C}}$ if and only if it is an equivalence of $\infty $-categories.

See Proposition 9.1.9.17.

Remark 9.2.1.11. Let $\kappa \leq \lambda $ be regular cardinals and let $\operatorname{\mathcal{C}}$ be an $\infty $-category. Suppose that $\operatorname{\mathcal{C}}$ is locally $\mu $-small, for some uncountable cardinal $\mu $ of exponential cofinality $\geq \lambda $. Then $\operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}})$ is also locally $\mu $-small (Proposition 8.7.3.11). In particular, if $\operatorname{\mathcal{C}}$ is a locally small $\infty $-category, then $\operatorname{Ind}(\operatorname{\mathcal{C}})$ is also locally small.

Variant 9.2.1.12. Let $\kappa \leq \lambda $ be regular cardinals and let $\operatorname{\mathcal{C}}$ be an $\infty $-category. Suppose that $\operatorname{\mathcal{C}}$ is essentially $\mu $-small, where $\mu > \lambda $ is a regular cardinal of exponential cofinality $\geq \lambda $. Then $\operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}})$ is also essentially $\mu $-small (Proposition 8.7.3.15). Beware that the inequality $\mu > \lambda $ cannot be replaced by the weaker condition $\mu \geq \lambda $. For example, if $\operatorname{\mathcal{C}}$ is an essentially small $\infty $-category, then $\operatorname{Ind}(\operatorname{\mathcal{C}})$ is usually not essentially small.

Definition 9.2.1.13 ($\operatorname{Ind}$-Extensions of Functors). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. Fix regular cardinals $\kappa \leq \lambda $ and a functor $H: \operatorname{\mathcal{C}}\rightarrow \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}})$ which exhibits $\operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}})$ as an $\operatorname{Ind}_{\kappa }^{\lambda }$-completion of $\operatorname{\mathcal{C}}$. Suppose we are given a functor of $\infty $-categories $f: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$, where $\operatorname{\mathcal{D}}$ admits $\lambda $-small $\kappa $-filtered colimits. Then there is a $(\kappa ,\lambda )$-finitary functor $F: \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{D}}$ and an isomorphism of functors $\alpha : f \rightarrow F \circ H$. Moreover, the pair $(F, \alpha )$ is unique up to (canonical) isomorphism. In this case, we say that $\alpha $ exhibits $F$ as an $\operatorname{Ind}_{\kappa }^{\lambda }$-extension of $f$. In the special case $\kappa < \lambda = \operatorname{\textnormal{\cjRL {t}}}$, we also say that $\alpha $ exhibits $F$ as an $\operatorname{Ind}_{\kappa }$-extension of $f$. If $\kappa = \aleph _0$ and $\lambda = \operatorname{\textnormal{\cjRL {t}}}$, we say that $\alpha $ exhibits $F$ as an an $\operatorname{Ind}$-extension of $f$.

Remark 9.2.1.14 ($\operatorname{Ind}$-Extensions as Kan Extensions). In the situation of Definition 9.2.1.13, suppose that we are given functors $f: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ and $F: \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{D}}$ and a natural transformation $\alpha : f \rightarrow F \circ H$. The following conditions are equivalent:

$(1)$

The natural transformation $\alpha $ exhibits $F$ as an $\operatorname{Ind}_{\kappa }^{\lambda }$-extension of $f$, in the sense of Definition 9.2.1.13. That is, the functor $F$ is $(\kappa ,\lambda )$-finitary and $\alpha $ is an isomorphism.

$(2)$

The natural transformation $\alpha $ exhibits $F$ as a left Kan extension of $f$ along $H$, in the sense of Variant 7.3.1.5.

See Corollary 8.4.5.11.

Remark 9.2.1.15. Let $\kappa \leq \lambda $ be regular cardinals and let $\operatorname{\mathcal{C}}$ be an $\infty $-category. The following conditions are equivalent:

$(1)$

The $\infty $-category $\operatorname{\mathcal{C}}$ admits $\lambda $-small $\kappa $-filtered colimits.

$(2)$

The tautological map $\operatorname{\mathcal{C}}\rightarrow \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}})$ admits a left adjoint $F: \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$.

Moreover, if these conditions are satisfied, then the functor $F$ is the $\operatorname{Ind}_{\kappa }^{\lambda }$-extension of the identity functor $\operatorname{id}_{\operatorname{\mathcal{C}}}$. See Proposition 8.4.5.13.

We conclude this section with a few remarks concerning the functoriality of the construction $\operatorname{\mathcal{C}}\mapsto \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}})$. For this, we need to take a bit of care about the sizes of the $\infty $-categories under consideration.

Definition 9.2.1.16. Let $\kappa \leq \lambda \leq \mu $ be regular cardinals, where $\mu $ is uncountable. We say that a functor $T: \operatorname{\mathcal{QC}}_{< \mu } \rightarrow \operatorname{\mathcal{QC}}_{< \mu }$ is an $\operatorname{Ind}_{\kappa }^{\lambda }$-completion functor if there exists a natural transformation $\eta : \operatorname{id}_{ \operatorname{\mathcal{QC}}_{< \mu } } \rightarrow T$ satisfying the following conditions:

  • For every $\mu $-small $\infty $-category $\operatorname{\mathcal{C}}$, the functor $\eta _{\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}\rightarrow T(\operatorname{\mathcal{C}})$ exhibits $T(\operatorname{\mathcal{C}})$ as an $\operatorname{Ind}_{\kappa }^{\lambda }$-completion of $\operatorname{\mathcal{C}}$.

  • For every functor $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ between $\mu $-small $\infty $-categories, the functor $T(F): T(\operatorname{\mathcal{C}}) \rightarrow T(\operatorname{\mathcal{D}})$ is $(\kappa ,\lambda )$-finitary.

If these conditions are satisfied, we say that $\eta $ exhibits $T$ as an $\operatorname{Ind}_{\kappa }^{\lambda }$-completion functor.

Remark 9.2.1.17. Let $\kappa \leq \lambda $ be regular cardinals, and let $\mathbb {K}$ be the collection of all $\lambda $-small $\kappa $-filtered $\infty $-categories. Then $T: \operatorname{\mathcal{QC}}_{< \mu } \rightarrow \operatorname{\mathcal{QC}}_{< \mu }$ is an $\operatorname{Ind}_{\kappa }^{\lambda }$-completion functor (in the sense of Definition 9.2.1.16) if and only if it is a $\mathbb {K}$-cocompletion functor (in the sense of Definition 8.7.3.3).

Proposition 9.2.1.18. Let $\kappa \leq \lambda < \mu $ be regular cardinals. If $\mu $ has exponential cofinality $\geq \lambda $, then there exists an $\operatorname{Ind}_{\kappa }^{\lambda }$-completion functor $T: \operatorname{\mathcal{QC}}_{< \mu } \rightarrow \operatorname{\mathcal{QC}}_{< \mu }$. Moreover, $T$ is uniquely determined up to isomorphism.

Proof. By virtue Corollary 8.7.3.10 (and Remark 9.2.1.17), it will suffice to observe that if $\operatorname{\mathcal{C}}$ an essentially $\mu $-small $\infty $-category, then $\operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}})$ is also essentially $\mu $-small (Variant 9.2.1.12). $\square$

Notation 9.2.1.19. Let $\kappa \leq \lambda < \mu $ be regular cardinals, where $\mu $ has exponential cofinality $\geq \lambda $. Proposition 9.2.1.18 asserts that there exists an essentially unique $\operatorname{Ind}_{\kappa }^{\lambda }$-completion functor $T: \operatorname{\mathcal{QC}}_{< \mu } \rightarrow \operatorname{\mathcal{QC}}_{< \mu }$. To emphasize its uniqueness, we will typically denote the functor $T(-)$ by $\operatorname{Ind}_{\kappa }^{\lambda }(-)$ (compare with Notation 9.2.1.8).

Following the convention of Remark 4.7.0.5, we say that $\kappa $ is small if it satisfies $\kappa < \operatorname{\textnormal{\cjRL {t}}}$, for some fixed strongly inaccessible cardinal $\operatorname{\textnormal{\cjRL {t}}}$. In this case, we typically denote the functor $\operatorname{Ind}_{\kappa }^{\operatorname{\textnormal{\cjRL {t}}}}(-)$ by $\operatorname{Ind}_{\kappa }(-)$. In the special case where $\kappa = \aleph _0$, we also denote the functor $\operatorname{Ind}_{\kappa }(-)$ by $\operatorname{Ind}(-)$.

Remark 9.2.1.20. Let $\kappa \leq \lambda $ be regular cardinals and let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. Applying the functor $\operatorname{Ind}_{\kappa }^{\lambda }(-)$ of Notation 9.2.1.19 (for any sufficiently large $\mu $), we obtain a functor $\operatorname{Ind}_{\kappa }^{\lambda }(F): \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{D}})$, which is characterized (up to isomorphism) by the requirements that it is $(\kappa ,\lambda )$-finitary and that the diagram

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}\ar [r] \ar [d]^{F} & \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}}) \ar [d]^{ \operatorname{Ind}_{\kappa }^{\lambda }(F) } \\ \operatorname{\mathcal{D}}\ar [r] & \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{D}}) } \]

commutes up to isomorphism. In other words, $\operatorname{Ind}_{\kappa }^{\lambda }(F)$ can be identified with the $\operatorname{Ind}_{\kappa }^{\lambda }$-extension of the composition $\operatorname{\mathcal{C}}\xrightarrow {F} \operatorname{\mathcal{D}}\rightarrow \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{D}})$ (see Definition 9.2.1.13).

Remark 9.2.1.21. Let $\kappa \leq \lambda $ be regular cardinals and let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. Choose a regular cardinal $\mu \geq \lambda $ such that $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ are essentially $\mu $-small, and let

\[ h_{\bullet }^{\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}(\operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \mu } ) \quad \quad h_{\bullet }^{\operatorname{\mathcal{D}}}: \operatorname{\mathcal{D}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{D}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \mu } ) \]

be covariant Yoneda embeddings for $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$. By virtue of Example 8.4.4.5, left Kan extension along $F$ determines a $\mu $-cocontinuous functor $F_{!}: \operatorname{Fun}(\operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \mu } ) \rightarrow \operatorname{Fun}( \operatorname{\mathcal{D}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{ < \mu } )$ for which the diagram

9.3
\begin{equation} \begin{gathered}\label{equation:Ind-functor-via-LKE} \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}\ar [d]^{F} \ar [r]^{ h_{\bullet }^{\operatorname{\mathcal{C}}} } & \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \mu } ) \ar [d]^{F_{!}} \\ \operatorname{\mathcal{D}}\ar [r]^{ h_{\bullet }^{\operatorname{\mathcal{D}}} } & \operatorname{Fun}( \operatorname{\mathcal{D}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \mu } ) } \end{gathered} \end{equation}

commutes up to (canonical) isomorphism. Using Proposition 8.4.5.8, we can identify $\operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}})$ and $\operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{D}})$ with the smallest full subcategories of $\operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \mu } )$ and $\operatorname{Fun}( \operatorname{\mathcal{D}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \mu } )$ which are closed under $\lambda $-small $\kappa $-filtered colimits and which contain the essential images of $h_{\bullet }^{\operatorname{\mathcal{C}}}$ and $h_{\bullet }^{\operatorname{\mathcal{D}}}$, respectively. It follows from the commutativity of the diagram (9.3) that $F_{!}$ restricts to a functor $\operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{D}})$, which we can identify with the functor $\operatorname{Ind}_{\kappa }^{\lambda }(F)$ of Remark 9.2.1.20.

Exercise 9.2.1.22. Let $\kappa \leq \lambda $ be regular cardinals and let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories which admits a right adjoint $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$. Show that $\operatorname{Ind}_{\kappa }^{\lambda }(G): \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{D}}) \rightarrow \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}})$ is right adjoint to $\operatorname{Ind}_{\kappa }^{\lambda }(F): \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{D}})$.

Proposition 9.2.1.23. Let $\kappa \leq \lambda < \mu $ be regular cardinals, where $\mu $ has exponential cofinality $\geq \lambda $. Then the functor

\[ \operatorname{Ind}_{\kappa }^{\lambda }: \operatorname{\mathcal{QC}}_{< \mu } \rightarrow \operatorname{\mathcal{QC}}_{< \mu } \]

is $(\lambda , \mu )$-finitary: that is, it commutes with $\mu $-small $\lambda $-filtered colimits.

Proof. By virtue of Remark 9.2.1.17, this is a special case of Corollary 9.1.10.11. $\square$