Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Notation 9.2.1.5. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\kappa $ be a small regular cardinal. It follows from Proposition 8.4.5.3 that there exists an $\infty $-category $\widehat{\operatorname{\mathcal{C}}}$ and a functor $H: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ which exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}_{\kappa }$-completion of $\operatorname{\mathcal{C}}$. In this case, the $\infty $-category $\widehat{\operatorname{\mathcal{C}}}$ is uniquely determined up to equivalence and depends functorially on $\operatorname{\mathcal{C}}$. To emphasize this dependence, we will often denote $\widehat{\operatorname{\mathcal{C}}}$ by $\operatorname{Ind}_{\kappa }(\operatorname{\mathcal{C}})$.